•  
  •  
 

Abstract

Based on the inflammatory bowel disease (IBD) experimental model in dietary fiber in seaweed, we summarized its function in protecting intestinal mucosal barrier and host immune system, and emphasized its direct mechanism of inhibiting immune cell infiltration, regulating oxidative stress level, protecting antioxidant defense system, regulating intestinal tight junction protein and balancing inflammatory factors level. The indirect mechanism of intestinal microbiota mediated Short chain fatty acids (SCFA) targeting IBD protection was also discussed, and the research direction of dietary fiber in seaweed in the improvement mechanism of IBD and other intestinal diseases was proposed.

Publication Date

6-28-2021

First Page

1

Last Page

7

DOI

10.13652/j.issn.1003-5788.2021.06.001

References

[1] 李明爽, 杨锡洪, 车红霞, 等. 海洋源活性物质对炎症性肠病营养干预作用研究进展[J]. 食品与机械, 2020, 36(5): 1-6.
[2] CELESTINE W, PHILIP H, LYNNETTE F. Potential benefits of dietary fibre intervention in inflammatory bowel disease[J]. International Journal of Molecular Sciences, 2016, 17(6): 919.
[3] IMHANN F, VAN DER VELDE K J, BARBIERI R, et al. The 1000IBD project: Multi-omics data of 1000 inflammatory bowel disease patients; Data release 1[J]. BMC Gastroenterology, 2019, 19(1): 5.
[4] CHAPMAN-KIDDELL C A, DAVIES P S W, GILLEN L, et al. Role of diet in the development of inflammatory bowel disease[J]. Inflammatory Bowel Diseases, 2010, 16(1): 137-151.
[5] ALEKSANDROVE K, ROMERO-MOSQUERA B, HERANDEZ V. Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention[J]. Nutrients, 2017, 9(9): 962.
[6] BENCHIMOL E I, MACK D R, GUTTMANN A, et al. Inflammatory bowel disease in immigrants to Canada and their children: A population-based cohort study[J]. American Journal of Gastroenterology, 2015, 110(4): 553-563.
[7] MOORE J, GAINES C. Dietary interventions for induction and maintenance of remission of inflammatory bowel disease[J]. International Journal of Nursing Practice, 2020, 26(4): 2.
[8] YOU Li-jun, GONG Yu-feng, LI Lai-hao. Beneficial effects of three brown seaweed polysaccharides on gut microbiota and their structural characteristics: An overview[J]. International Journal of Food Science & Technology, 2020, 55(3): 1 199-1 206.
[9] JIMNEZ-ESCRIG A, SNCHEZ-MUNIZ F J. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism[J]. Nutrition Research, 2000, 20(4): 585-598.
[10] 周志刚, 毕燕会. 大型海藻能源化利用的研究与思考[J]. 海洋经济, 2011(4): 23-28.
[11] ANDERSON J W, BRIDGES S R. Dietary fiber content of selected foods[J]. American Journal of Clinical Nutrition, 1988, 47(3): 440-447.
[12] HAN Y R, ALI M Y, WOO M H, et al. Anti-diabetic and anti-inflammatory potential of the edible brown Alga Hizikia fusiformis[J]. Journal of Food Biochemistry, 2015, 39(4): 417-428.
[13] DUTRA N L S, BRITO T V D, MAGALHES D D A, et al. Sulfated polysaccharide extracted from seaweed Gracilariacaudata attenuates acetic acid-induced ulcerative colitis[J]. Food Hydrocolloids, 2020, 111(3): 106221.
[14] SCALDAFERRI F, LOPETUSO L R, PIZZOFERRATO M, et al. The gut barrier: New acquisitions and therapeutic approaches[J]. J Clin Gastroenterol, 2012, 46(9): 12-17.
[15] HERING N A, FROMM M, SCHULZKE J D. Determinants of colonic barrier function in inflammatory bowel disease and potential therapeutics[J]. The Journal of Physiology, 2012, 590(5): 1 035-1 044.
[16] 李兴太, 张春英, 仲伟利, 等. 活性氧的生成与健康和疾病关系研究进展[J]. 食品科学, 2016, 37(13): 257-270.
[17] YANG Ying, ZAHNG Lu-lu, JIANG Guo-yong, et al. Evaluation of the protective effects of Ganoderma atrum polysaccharide on acrylamide-induced injury in small intestine tissue of rats[J]. Food & Function, 2019, 10(9): 5 863-5 872.
[18] BRITO T V, BARROS F C N, SILVA R O, et al. Sulfated polysaccharide from the marine algae Hypnea musciformis inhibits TNBS-induced intestinal damage in rats[J]. Carbohydr Polym, 2016, 151: 957-964.
[19] LI Po-Hsien, LU Wen-Chien, CHAN Yung-Jia, et al. Feasibility of using seaweed (Gracilaria coronopifolia) synbiotic as a bioactive material for intestinal health[J]. Foods, 2019, 8(12): 623.
[20] DUTRA N L S, BRITO T V D, MAGALHES D D A, et al. Sulfated polysaccharide extracted from seaweed Gracilariacaudata attenuates acetic acid-induced ulcerative colitis[J]. Food Hydrocolloids, 2020, 111: 106221.
[21] CIRCU M L, AW T Y. Redox biology of the intestine[J]. Free Radic Res, 2011, 45(11): 1 245-1 266.
[22] DEPONTE M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2013, 1 830(5): 3 217-3 266.
[23] REZAEI N, EFTEKHARI M H, TANIDEH N, et al. Protective effects of honey and spirulina platensis on acetic acid-induced ulcerative colitis in rats[J]. Iranian Red Crescent Medical Journal, 2018, 20(4): e62517.
[24] O'NEILL S, BRAULT J, STASIA M J, et al. Genetic disorders coupled to ROS deficiency[J]. Redox Biology, 2015, 6: 135-156.
[25] ELISABET S A, DAHL S T, BEELEN G A V, et al. Intestinal epithelial cells express immunomodulatory ISG15 during active ulcerative colitis and Crohn's disease[J]. Journal of Crohns and Colitis, 2020, 14(7): 920-934.
[26] HARRIS J A, JAIN S, REN Q, et al. CD163 versus CD68 in tumor associated macrophages of classical hodgkin lymphoma[J]. Diagnostic Pathology, 2012, 7(1): 12.
[27] MARIN M, GIMENO C, GINER R M, et al. Influence of dimerization of apocynin on its effects in experimental colitis[J]. Journal of Agricultural & Food Chemistry, 2017, 65(20): 4 083-4 091.
[28] ZHU Cheng-hui, ZHANG Shui-mei, SONG Cheng-wei, et al. Selenium nanoparticles decorated with Ulva lactuca polysaccharide potentially attenuate colitis by inhibiting NF-κB mediated hyper inflammation[J]. Journal of Nanobiotechnology, 2017, 15(1): 20-35.
[29] YING L Q, ERI R D, HELEN F J, et al. Fucoidan extracts ameliorate acute colitis[J]. PLoS One, 2015, 10(6): e0128453.
[30] SONG Wei, LI Yan, ZHANG Xue-lei, et al. Potent anti-inflammatory activity of polysaccharides extracted from Blidingia minima and their effect in a mouse model of inflammatory bowel disease[J]. Journal of Functional Foods, 2019, 61: 103494.
[31] 刘顺爱, 杨贵贞. 嗜酸性粒细胞与组织免疫损伤[J]. 国外医学(免疫学分册), 1995, 16(5): 235-239.
[32] 安博然, 祝斌. 内皮素-1在炎症性肠病发病中作用的研究进展[J]. 胃肠病学, 2016, 21(5): 304-306.
[33] 吴霞龙. 自拟愈溃汤联合美沙拉嗪治疗溃疡性结肠炎疗效及对肠道黏膜屏障功能、氧化应激指标和血管内皮细胞功能的影响[J]. 现代中西医结合杂志, 2020, 29(10): 1 078-1 081.
[34] OTANI T, FURUSE M. Tight junction structure and function revisited[J]. Trends in Cell Biology, 2020, 30(10): 805-817.
[35] ZEISSIG S, BURGEL N, GUNZEL D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease[J]. Gut, 2007, 56(1): 61-72.
[36] AL-SADI R, ENGERS J, ABDULQADIR R. Talk about micromanaging! Role of microRNAs in intestinal barrier function[J]. AJP Gastrointestinal and Liver Physiology, 2020, 319(2): 170-174.
[37] IRAHA A, HIROSHI C, HOKAMA A, et al. Fucoidan enhances intestinal barrier function by upregulating the expression of claudin-1[J]. World Journal of Gastroenterology, 2013, 19(33): 5 500-5 507.
[38] HWANG Pai-an, PHAN N N, LU Wen-jung, et al. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells[J]. Food & Nutrition Research, 2016, 2(60): 32033.
[39] HOON L S, EUN K J, MILA C. Immunological pathogenesis of inflammatory bowel disease[J]. Intestinal Research, 2018, 16(1): 26-42.
[40] ERI R, MCGUCKIN M A, WADLEY R. T cell transfer model of colitis: a great tool to assess the contribution of T cells in chronic intestinal inflammation[J]. Leucocytes, 2012, 844: 261-275.
[41] WEI Jia, FENG Jie-xiong. Signaling pathways associated with inflammatory bowel disease[J]. Recent Pat Inflamm Allergy Drug Discov, 2010, 4(2): 105-117.
[42] ARYA V S, KANTHLAL S K, LINDA G. The role of dietary polyphenols in inflammatory bowel disease: A possible clue on the molecular mechanisms involved in the prevention of immune and inflammatory reactions[J]. J Food Biochem, 2020, 44(11): 17.
[43] SAMOILA I, DINESCU S, COSTACHE M. Interplay between cellular and molecular mechanisms underlying inflammatory bowel diseases development: A focus on ulcerative colitis[J]. Cells, 2020, 9(7): 1 647.
[44] AZUMA K, OSAKI T, IFUKU S, et al. Suppressive effects of cellulose nanofibers—made from adlay and seaweed—on colon inflammation in an inflammatory bowel-disease model[J]. Bioactive Carbohydrates and Dietary Fibre, 2013, 2(1): 65-72.
[45] SHENG Kang-liang, ZHANG Guang-hui, SUN Ming, et al. Grape seed proanthocyanidin extract ameliorates dextran sulfate sodium-induced colitis through intestinal barrier improvement, oxidative stress reduction, and inflammatory cytokines and gut microbiota modulation[J]. Food & Function, 2020, 11(9): 7 817-7 829.
[46] 林述洲, 蔡文. 血清IL-2、IL-6和IL-8在克罗恩病早期诊断中的意义[J]. 中国实用医药, 2013, 8(16): 55-56.
[47] SUDIRMAN S, HSU Yuan-hua, HE Jia-ling, et al. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice[J]. PLoS One, 2018, 13(10): e0205252.
[48] TIAN Jie, ZHU Qiu-gang, ZHANG Yi-dan, et al. Olfactory ecto-mesenchymal stem cell-derived exosomes ameliorate experimental colitis via modulating Th1/Th17 and treg cell responses[J]. Frontiers in Immunology, 2020, 11: 598322.
[49] RYAN M T, O'SHEA C J, COLLINS C B, et al. Effects of dietary supplementation with Laminaria hyperborea, Laminaria digitata, and Saccharomyces cerevisiae on the IL-17 pathway in the porcine colon[J]. Journal of Animal Science, 2012, 90(4): 263-265.
[50] O'SHEA C J, O'DOHERTY J V, CALLANAN J J, et al. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model[J]. Journal of Nutritional Science, 2016, 5: 15-24.
[51] ALHOUAYEK M, AMERAOUI H, MUCCIOLI G G. Bioactive lipids in inflammatory bowel diseases: From pathophysiological alterations to therapeutic opportunities[J]. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 2021, 1 866(2): 158854.
[52] MATSUMOTO S, NAGAOKA M, HARA T, et al. Fucoidan derived from Cladosiphonokamuranus Tokida ameliorates murine chronic colitis through the down-regulation of interleukin-6 production on colonic epithelial cells[J]. Clinical & Experimental Immunology, 2010, 136(3): 432-439.
[53] LIU Sheng, ZHAO Wen-jing, LAN Ping, et al. The microbiome in inflammatory bowel diseases: From pathogenesis to therapy[J]. Protein Cell, 2020, 13: 1-15.
[54] KOSTIC A D, XAVIER R J, GEVERS D. The microbiome in inflammatory bowel disease: Current status and the future ahead[J]. Gastroenterology, 2014, 146(6): 1 489-1 499.
[55] METWALY A, HALLER D. Multi-omics in IBD biomarker discovery: The missing links[J]. Nature Reviews Gastroenterology & 38 Hepatology, 2019, 6(10): 587-588.
[56] MAKKI K, DEEHANE C, WALTER J, et al. The impact of dietary fiber on gut microbiota in host health and disease[J]. Cell Host & Microbe, 2018, 23(6): 705-715.
[57] DESAI M, SEEKATZ A, KOROPATKIN N, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility[J]. Cell, 2016, 167(5): 1 339-1 353.
[58] GALVEZ J, RODRGUEZ-CABEZAS M E, ZARZUELO A. Effects of dietary fiber on inflammatory bowel disease[J]. Molecular Nutrition & Food Research, 2005, 49(6): 601-608.
[59] KIM J Y, KWON Y M, KIM I S, et al. Effects of the brown seaweed laminaria japonica supplementation on serum concentrations of IgG, triglycerides, and cholesterol, and intestinal microbiota composition in rats[J]. Front Nutr, 2018, 5: 23.
[60] SUN Ming-ming, WU Wei, LIU Zhan-ju, et al. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases[J]. Journal of Gastroenterology, 2017, 52(1): 1-8.
[61] FURUSAWA Y, OBATA Y, FUKUDA S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2014, 504(7 480): 446-450.
[62] KOH A, VADDER DE F, KOVATCHEVA-DATCHARY P, et al. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites[J]. Cell, 2016, 165(6): 1 332-1 345.
[63] DEVILLE C, GHARBI M, DANDRIFOSSE G, et al. Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics[J]. Journal of the Science of Food & Agriculture, 2010, 87(9): 1 717-1 725.
[64] KIM M H, KANG S G, PARK J H, et al. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice[J]. Gastroenterology, 2013, 145(2): 396-406.
[65] MASLOWSKI K M, VIEIRA A T, NG A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43[J]. Nature, 2009, 461(7 268): 1 282-1 286.
[66] LIU Hu, WANG Ji, HE Ting, et al. Butyrate: A double-edged sword for health? [J]. Adv Nutr, 2018, 9(1): 21-29.
[67] LEVINE A, SIGALLBONEH R, WINE E. Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases[J]. Gut, 2018, 67(9): 1 726-1 738.
[68] RUSSO E, GIUDICI F, FIORINDI C, et al. Immunomodulating activity and therapeutic effects of short chain fatty acids and tryptophan post-biotics in inflammatory bowel disease[J]. Frontiers in Immunology, 2019, 10: 2 754-2 754.
[69] QIAO Chen-meng, SUN Meng-fei, JIA Xue-bing, et al. Sodium butyrate exacerbates Parkinson's disease by aggravating neuroinflammation and colonic inflammation in MPTP-induced mice model[J]. Neurochemical Research, 2020, 45(9): 2 128-2 142.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.