Abstract
Soluble solid content is one of the important indexes for the internal quality analysis of Hami melon. In this study, the prediction model of soluble solid content of Hami melon was established by using near infrared spectroscopy combined with data dimension reduction method. Compared with a variety of spectral preprocessing methods, the second-order derivative was used to process the original spectrum; the preprocessed spectral data were combined with CARS and MC-UVE to extract the characteristic wavelength, and the principal component analysis was used to reduce the dimension; Finally, the spectral data of feature selection and feature extraction were used as the input variables of support vector machine to establish the prediction model of soluble solid content of Hami melon. The results showed that the prediction model established by CARS + SVM was the best, with the correlation coefficient of the model calibration of 0.981 4, and the correlation coefficient of the prediction set was 0.900 2. This model could be used to accurately predict the soluble solids of Hami melon.
Publication Date
6-28-2021
First Page
81
Last Page
85
DOI
10.13652/j.issn.1003-5788.2021.06.014
Recommended Citation
Yang, GUO; Jun-xian, GUO; Yong, SHI; Xue-lian, LI; Yan-cen, LIU; Hua, HUANG; and Ze-ping, LI
(2021)
"Prediction of soluble solids in Hami melon by CARS-SVM,"
Food and Machinery: Vol. 37:
Iss.
6, Article 14.
DOI: 10.13652/j.issn.1003-5788.2021.06.014
Available at:
https://www.ifoodmm.cn/journal/vol37/iss6/14
References
[1] 连媛媛, 熊乾威, 杨木莎, 等. 基于近红外光谱技术快速检测椰汁品质[J]. 食品工业科技, 2019, 40(12): 235-240.
[2] 赵杰文, 毕夏坤, 林颢, 等. 鸡蛋新鲜度的可见—近红外透射光谱快速识别[J]. 激光与光电子学进展, 2013, 50(5): 213-220.
[3] 何鸿举, 王魏, 李波, 等. 近红外高光谱快速无接触评估冷鲜猪肉脂质氧化[J]. 食品与机械, 2020, 36(8): 117-122.
[4] 黄伟, 杨秀娟, 曹志勇, 等. 近红外反射光谱快速检测滇南小耳猪肉中水分、粗脂肪及粗蛋白含量的研究[J]. 中国畜牧杂志, 2015, 51(7): 73-77.
[5] 刘燕德, 张雨, 徐海, 等. 基于近红外光谱检测不同产地石榴的糖度[J]. 激光与光电子学进展, 2020, 57(1): 253-259.
[6] 路敏. 基于近红外光谱的梨的可溶性固形物含量的无损检测[D]. 兰州: 兰州大学, 2019: 11-18.
[7] 孙通, 江水泉. 基于可见/近红外光谱和变量优选的南水梨糖度在线检测[J]. 食品与机械, 2016, 32(3): 69-72.
[8] 程文宇, 管骁, 刘静. 近红外光谱技术检测液态奶中微量三聚氰胺的可行性研究[J]. 食品与机械, 2015, 31(1): 71-74, 81.
[9] 张德虎, 田海清, 武士钥, 等. 河套蜜瓜糖度可见近红外光谱特征波长提取方法研究[J]. 光谱学与光谱分析, 2015, 35(9): 2 505-2 509.
[10] GREENSILL C V, WOLFS P J, SPIEGELMAN C H, et al. Calibration transfer between PDA-Based NIR spectrometers in the NIR assessment of melon soluble solids content[J]. Applied Spectroscopy, 2001, 55(5): 647-653.
[11] GUTHRIE J A. NIR model development and robustness in prediction of melon fruit total soluble solids[J]. Australian Journal of Agricultural Research, 2006, 57(4): 411-418.
[12] 毕智健. 哈密瓜糖度可见近红外光谱在线检测系统设计研究[D]. 石河子: 石河子大学, 2017: 6-10.
[13] 马本学, 肖文东, 祁想想, 等. 基于漫反射高光谱成像技术的哈密瓜糖度无损检测研究[J]. 光谱学与光谱分析, 2012, 32(11): 3 093-3 097.
[14] 高升, 王巧华. 基于高光谱图像信息融合的红提糖度无损检测[J]. 发光学报, 2019, 40(12): 1 575-1 584.
[15] DONG Jin-lei, GUO Wen-chuan, WANG Zhuan-wei, et al. Nondestructive determination of soluble solids content of 'Fuji' apple produced in different areas and bagged with different materials during ripening[J]. Food Analetical Methods, 2016, 9(5): 1 087-1 095.
[16] 杨晓玉, 刘贵珊, 丁佳兴, 等. 灵武长枣VC含量的高光谱快速检测研究[J]. 光谱学与光谱分析, 2019, 39(1): 230-234.
[17] 孟庆龙, 尚静, 黄人帅, 等. 基于主成分回归的苹果可溶性固形物含量预测模型[J]. 保鲜与加工, 2020, 20(5): 185-189.
[18] 王小燕, 王锡昌, 刘源, 等. 基于SVM算法的近红外光谱技术在鱼糜水分和蛋白质检测中的应用[J]. 光谱学与光谱分析, 2012, 32(9): 2 418-2 421.
[19] 朱哲燕, 刘飞, 张初, 等. 基于中红外光谱技术的香菇蛋白质含量测定[J]. 光谱学与光谱分析, 2014, 34(7): 1 844-1 848.
[20] 赵杰文, 林颢. 食品、农产品检测中的数据处理与分析方法[M]. 北京: 科学出版社, 2012: 92-97.