•  
  •  
 

Abstract

The representation layer, hidden layer and output layer neuron models of quantum convolution neural network were designed. Modified linear activation function Relu was used as the activation function, and the quantum rotation angle and neural connection weight were optimized by training error function. The simulation results of eight kinds of micro parts show that the recognition accuracy of quantum convolution neural network algorithm is higher, the time consumption is less and the recognition effect is better than other algorithms.

Publication Date

6-28-2021

First Page

120

Last Page

125

DOI

10.13652/j.issn.1003-5788.2021.06.020

References

[1] 熊保玉, 蹇清平. 基于宇宙量子算法的微小零件尺寸检测[J]. 食品与机械, 2020, 36(1): 121-125.
[2] 杜长强, 许良元. 腐竹切割刀具优化设计分析[J]. 食品与机械, 2019, 35(4): 103-107.
[3] LOTFI Behnam, BEISS Paul. Application of neural networking for fatigue limit prediction of powder metallurgy steel parts[J]. Materials & Design, 2013, 50(9): 440-445.
[4] ZHOU Fan-han, LIU Bing-jun, DUAN Kai. Coupling wavelet transform and artificial neural network for forecasting estuarine salinity[J]. Journal of Hydrology, 2020, 588(9): 125 127-125 135.
[5] BARTH R, IJSSELMUIDEN J, HEMMING J, et al. Synthetic bootstrapping of convolutional neural networks for semantic plant part segmentation[J]. Computers and Electronics in Agriculture, 2019, 161(6): 291-304.
[6] GIRSHICK R, DONAHUE J, DARELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus, Ohio: IEEE, 2014: 580-587.
[7] REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1 137-1 149.
[8] WU Di-hua, LU Shuai-chao, JIANG Mei, et al. Using channel pruning-based YOLOv4 deep learning algorithm for the real-time and accurate detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
[9] 许兴阳, 刘宏志. 基于量子门组的卷积神经网络设计与实现[J]. 计算机工程与应用, 2018, 54(20): 54-61.
[10] 张培林, 李胜, 吴定海, 等. 基于量子计算的限制波尔兹曼机网络模型及分类算法[J]. 振动与冲击, 2015, 34(24): 26-31.
[11] 闫茜茜, 王鹏程, 刘兴云. 一维量子卷积计算[J]. 计算机工程与应用, 2020, 56(8): 55-59.
[12] 司小婷, 吴文江, 孙一兰. 基于视觉的零件识别和定位[J]. 组合机床与自动化加工技术, 2016(10): 70-73.
[13] 何晓阳, 徐惠钢, 谢启. 基于LabVIEW与BP神经网络的零件识别系统[J]. 仪表技术与传感器, 2017(1): 119-122.
[14] 任楷飞, 孟令军, 顾泽凌. 基于灰度值金字塔算法的零件识别系统设计[J]. 中国测试, 2018, 44(7): 91-95.
[15] 黄海松, 魏中雨, 姚立国. 基于深度学习的零件实例分割识别研究[J]. 组合机床与自动化加工技术, 2019(5): 127-130.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.