•  
  •  
 

Abstract

The polysaccharide of Camellia Nitidissima Chi was extracted by water extraction and alcohol precipitation, and the polysaccharide was purified by DEAE cellulose anion exchange classification to obtain TPS1, TPS2 and TPS3;The molecular weight, monosaccharide composition and microstructure of TPS1, TPS2 and TPS3 were analyzed by gel permeation chromatography, pre-column PMP derivatization and HPLC and fourier transform infraredspectrometer (FTIR), and the antioxidant activity of TPS1, TPS2 and TPS3 were studied in vitro. The results were described as followed. TPS1 was mainly composed of glucose, galactose and arabinose, and was a heteropolysaccharide composed of two polysaccharides with different molecular weights(1.55×105, 1.05×104 Da).TPS2 and TPS3 were mainly composed of rhamnose, galacturonic acid, galactose and arabinose, and they were homogeneous polysaccharides with the average molecular weight of 4.21×105 Da and 6.67×105 Da, respec-tively. Fourier transform infrared spectrometer (FTIR) showed that the heterocarbon-connected modes of three polysaccharide fractions were β-configuration. In addition, the polysaccharides of different levels of Camellia Nitidissima Chi had certain free radical scavenging effects, and there was a dose-effect relationship. Among them, TPS3 with the highest content of uronic acid had the best antioxidant activity in vitro, indicating that the antioxidant activity of Camellia Nitidissima Chi polysaccharide was related to its structural and composition. In conclusion, the polysaccharide of Camellia Nitidissima Chi had potential antioxidant activity.

Publication Date

6-28-2021

First Page

184

Last Page

190

DOI

10.13652/j.issn.1003-5788.2021.06.031

References

[1] 苏宗明, 莫新礼. 我国金花茶组植物的地理分布[J]. 广西植物, 1988(1): 75-81.
[2] 陈莉萍, 解兵斌, 唐绍清. 基于SSR标记的平果金花茶的遗传多样性和遗传结构分析[J]. 分子植物育种, 2020, 18(10): 3 288-3 293.
[3] 温静, 梁伟, 王欣晨, 等. 金花茶化学成分及抗炎抗氧化活性研究[J]. 中国药物化学杂志, 2020, 30(8): 487-492.
[4] 尹日凤, 李宇清, 王亚军, 等. 金花茶叶提取物对糖尿病小鼠肝脏糖代谢的调节作用[J]. 中药材, 2017, 40(12): 2 956-2 959.
[5] 何进勇, 邝新红, 李征征, 等. 三种金花茶提取物降脂作用实验研究[J]. 现代生物医学进展, 2018, 18(4): 644-647.
[6] 李航, 李弘扬, 李瑶, 等. 金花茶提取物体对高血压模型大鼠血压和心率的影响[J]. 亚太传统医药, 2017, 13(20): 8-11.
[7] 黄思茂, 曹后康, 高雅, 等. 金花茶多糖对四氯化碳致小鼠急性肝损伤的保护作用及其机制的研究[J]. 中药药理与临床, 2016, 32(6): 117-120.
[8] ULLAH S, KHALIL A A, SHAUKAT F, et al. Sources, extraction and biomedical properties of polysaccharides[J]. Foods, 2019, 8(8): 304.
[9] 路垚. 金花茶多糖降血脂机理初探及其亲和层析分离技术的研究[D]. 湛江: 广东海洋大学, 2014: 24.
[10] 牛广俊, 朱思, 陈清英, 等. 金花茶不同部位多糖的测定及体外抗氧化活性[J]. 中国实验方剂学杂志, 2014, 20(20): 168-172.
[11] 刘茜, 许子竞, 胡旭飞. 响应面微波辅助提取金花茶花多糖工艺研究[J]. 湖南师范大学自然科学学报, 2016, 39(3): 40-45.
[12] 田晓春. 金花茶多糖的分离纯化及化学结构的研究[D]. 湛江: 广东海洋大学, 2011: 31.
[13] 温文娟, 刘珊, 黄远丽. 苯酚硫酸法与蒽酮硫酸法测定香菇多糖含量比较[J]. 现代食品, 2020(21): 177-179.
[14] 任珍芸, 陈晓航, 王玺, 等. 硫酸—咔唑微孔板法检测肺炎链球菌荚膜多糖中糖醛酸含量[J]. 微生物学免疫学进展, 2017, 45(2): 36-41.
[15] 王艾平, 周丽明. 考马斯亮蓝法测定茶籽多糖中蛋白质含量条件的优化[J]. 河南农业科学, 2014, 43(3): 150-153.
[16] 林倩, 吴昊, 刘芊辰, 等. 响应面法优化福林酚法测定冬枣中总酚含量[J]. 食品工业, 2020, 41(4): 86-90.
[17] 宋迪燊, 何海艳, 周玉, 等. 2,4-二硝基酚分光光度法测定山楂片中还原糖的研究[J]. 食品工业, 2015, 36(9): 274-277.
[18] 邵淑宏. 乌龙茶多糖理化性质及抗氧化、降血糖活性研究[D]. 杭州: 浙江大学, 2015: 60.
[19] 黄小兰, 何旭峰, 杨勤, 等. PMP柱前衍生化HPLC法测定地参多糖的单糖组成[J]. 食品与发酵工业, 2020, 46(7): 250-256.
[20] 徐雪峰, 李桂娟, 闫浩, 等. 赤灵芝多糖分离纯化及体外抗氧化性研究[J]. 食品与机械, 2017, 33(1): 144-148.
[21] 余腾飞, 唐年初, 刘诚毅. 忧遁草多糖提取工艺优化及抗氧化活性研究[J]. 食品与机械, 2020, 36(2): 171-175.
[22] GUO Mi-mi, TANG Hao-guo, YAO Hong-juan, et al. Study on the isolation of polysaccharide from purple sweet potato by deae-cellulose 52[J]. Advanced Materials Research, 2013, 690/691/692/693: 1 286-1 291.
[23] LEE J S, SYNYTSYA A, KIM H B, et al. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.)[J]. International Immunopharmacology, 2013, 17(3): 858-866.
[24] DU Hong-tao, CHEN Jun-cheng, TIAN Shan, et al. Extraction optimization, preliminary characterization and immunological activities in vitro of polysaccharides from Elaeagnus angustifolia L. pulp[J]. Carbohydrate Polymers, 2016, 151(1): 348-357.
[25] ZHU Jiang-xiong, CHEN Zi-yan, CHEN Liang, et al. Comparison and structural characterization of polysaccharides from natural and artificial Se-enriched green tea[J]. International Journal of Biological Macromolecules, 2019, 130: 388-398.
[26] WANG Li-jun, YU Xiao-na, YANG Xiu-shi, et al. Structural and anti-inflammatory characterization of a novel neutral polysaccharide from North American ginseng (Panax quinquefolius)[J]. International Journal of Biological Macromolecules, 2015, 74: 12-17.
[27] 赵琪, 赵利, 杨玉娈, 等. 河蚬多糖分离纯化及抗氧化、抗肿瘤活性研究[J]. 食品与机械, 2017, 33(4): 127-132.
[28] 易军鹏, 王赛, 李欣, 等. 蒸汽爆破提取牛膝多糖工艺优化及抗氧化性研究[J]. 食品与机械, 2018, 34(6): 145-151.
[29] 叶润, 蔡静, 赵丽平, 等. 大孔树脂纯化油菜叶多糖的工艺及其抗氧化活性研究[J]. 粮食与油脂, 2020, 33(9): 102-106.
[30] 岳峥嵘, 赵博, 张国财, 等. 血红铆钉菇多糖超声微波联合提取工艺优化及其抗氧化活性[J]. 食品工业科技, 2020, 41(22): 165-171.
[31] 陈浩. 普洱茶多糖降血糖及抗氧化作用研究[D]. 杭州: 浙江大学, 2013: 46.
[32] 张阳, 王文君, 谭妙英, 等. 不同提取方法对南酸枣果胶多糖理化性质及抗氧化作用的影响[J]. 食品研究与开发, 2020, 41(23): 21-26.
[33] 石玉涛. 茶多糖抗氧化和降血糖作用研究[D]. 武汉: 华中农业大学, 2010: 31-32.
[34] 熊磊, 陈慧, 胡文兵, 等. 黄金茶多糖超声提取工艺及体外抗氧化研究[J]. 江西农业大学学报, 2017, 39(4): 801-809.
[35] 郭守东. 微生物胞外多糖的结构及其抗氧化活性研究[D]. 青岛: 中国海洋大学, 2010: 201.
[36] 宋丽丽, 闻格, 霍姗浩, 等. 小黄姜多糖的分离纯化及其结构特征及抗氧化活性研究[J]. 食品与发酵工业, 2020, 46(12): 73-79.
[37] WANG Jun-qiao, HU Shu-zhen, NIE Shao-ping, et al. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides[J]. Oxidative Medicine and Cellular Longevity, 2016, 2 016: 1-13.
[38] 何钊. 白蜡虫多糖分离纯化与抗氧化、免疫活性研究[D]. 北京: 中国林业科学研究院, 2014: 78-80.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.