Abstract
Based on the domestic and abroad research status of the bionic chewing device, its theoretical simulation and application were summarized, and the development direction was also prospected.
Publication Date
6-28-2021
First Page
213
Last Page
218
DOI
10.13652/j.issn.1003-5788.2021.06.035
Recommended Citation
Gui-lin, XIE; Qi, ZHAO; Yi-fei, GUO; Chao, WANG; and Qian, MAO
(2021)
"Research progress of bionic chewing device and its application in food texture evaluation,"
Food and Machinery: Vol. 37:
Iss.
6, Article 35.
DOI: 10.13652/j.issn.1003-5788.2021.06.035
Available at:
https://www.ifoodmm.cn/journal/vol37/iss6/35
References
[1] ROLLS E T. The texture and taste of food in the brain[J]. Journal of Texture Studies, 2020, 51(1): 23-44.
[2] GULD Z, DINA N S, GERE A, et al. Comparison of sensory evaluation techniques for Hungarian wines[J]. Journal of Chemometrics, 2020, 34(4): e3219.
[3] SODHI N S, SINGH B, DHILL ON B, et al. Application of electromyography (EMG) in food texture evaluation of different Indian sweets[J]. Asian Journal of Dairy and Food Research, 2019, 38(1): 41-48.
[4] FRANKS E M , JELTEM M , LUCK P J, et al. Morphological and masticatory performance variation of mouth behavior groups[J]. Journal of Texture Studies, 2020, 51(2): 343-351.
[5] TODOROV G, KAMBEROV K, PANTALEEV T, et al. Elastic rail clip design development, based on virtual prototyping[J]. Iop Conference, 2018, 393(1): 012120.
[6] 庆毅辉, 王淑青, 张子蓬, 等. 上甑机器人运动学分析及轨迹研究[J]. 食品与机械, 2020, 36(12): 70-73.
[7] PARK H S, DANG D V, NGUYEN T T. Development of a flexible roll forming machine for cutting curved parts with virtual prototyping technology[J]. Journal of Advanced Mechanical Design Systems and Manufacturing, 2019, 13(2): JAMDSM0033.
[8] FU Jian-xun, GAO Feng, CHEN Wei-xing, et al. Kinematic accuracy research of a novel six-degree-of-freedom parallel robot with three legs[J]. Mechanism & Machine Theory, 2016, 102: 86-102.
[9] CHEN Feng-jun, LIAO Jin-qi, XIONG Jun, et al. High-precision trajectory tracking design and simulation for six degree of freedom robot based on improved active disturbance rejection control[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(10): 3 659-3 669.
[10] NAGAOKA M, SUZUKI H, KANAYAMA K, et al. Inability to close mouth and dysphagia caused by pseudobulbar palsy: Trial treatment by vibration-induced mastication-like movement[J]. BMJ Case Reports, 2019, 12(12): e232061.
[11] 黄超, 许向亮, 孙玉春, 等. 下颌髁突功能面三维运动轨迹的初步推算和模拟[J]. 中华口腔医学杂志, 2018, 53(10): 669-673.
[12] GARCIA E, LEAL M M, VILLAMIL M B. Modeling and simulation of masticatory muscles[J]. Procedia Computer Science, 2015, 51: 2 878-2 882.
[13] 王艺博. 仿人类下颌机器人的机构设计与仿真分析[J]. 机电信息, 2016(24): 133-134.
[14] 李晓锋, 王加森, 卢慧, 等. 6-PSS仿生下颌咀嚼平台工作空间分析及其优化[J]. 机械设计, 2016, 33(1): 48-54.
[15] 程秀芳, 张超. 下颌康复机器人结构设计与仿真分析[J]. 机械传动, 2019, 43(3): 95-98.
[16] 刘同占. 仿下颌运动机器人设计及仿生性能研究[D]. 大连: 大连理工大学, 2012: 239-248.
[17] 丛明, 刘同占, 温海营, 等. 一种新型仿下颌运动机器人设计及运动性能分析[J]. 机器人, 2013, 35(2): 38-53.
[18] 宋佳. 仿下颌运动并联机器人的性能分析与参数优化[D]. 大连: 大连理工大学, 2013: 29-37.
[19] 苌占波. 咀嚼机器人建模与控制研究[D]. 大连: 大连理工大学, 2010: 11-15.
[20] YU Jing-hu, GANG Pei, YIN Zhi-zhang. Reverse kinemics of bionic 6-RSS chewing robot for food mechanical properties measuring[J]. Applied Mechanics & Materials, 2012, 127: 3-11.
[21] XU W L, FANG F C, BRONLUNED J, et al. Generation of rhythmic and voluntary patterns of mastication using Matsuoka oscillator for a humanoid chewing robot[J]. Mechatronics, 2009, 19(2): 205-217.
[22] 雷孟冬. 六自由度咀嚼虚拟样机设计[D]. 成都: 电子科技大学, 2013: 15-59.
[23] 王加森. 面向食品材料的高仿真咀嚼平台研究[D]. 无锡: 江南大学, 2015: 8-27.
[24] 秦文龙, 丛明, 任翔, 等. 仿生咀嚼机器人弹性颞下颌关节设计与性能分析[J]. 生物医学工程学杂志, 2020, 37(3): 512-518, 526.
[25] TAHIR A M, JILICH M, TRINH D C, et al. Architecture and design of a robotic mastication simulator for interactive load testing of dental implants and the mandible[J]. The Journal of Prosthetic Dentistry, 2019, 122(4): 389.
[26] 陈根禄, 俞经虎, 揭景斌, 等. 仿生咀嚼6PSS并联驱动平台的动力学分析[J]. 现代制造工程, 2018(7): 43-50.
[27] 丰瑞鑫. 用于食品检测的咀嚼平台机构及其控制系统研究[D]. 成都: 电子科技大学, 2019: 11-18.
[28] LIU Kai, KONG Xian-wen, YU Jing-hu. Operation mode analysis of lower-mobility parallel mechanisms based on dual quaternions[J]. Mechanism and Machine Theory, 2019, 142: 103577.
[29] LIANG Xing-hai, YUKIO Takeda. An iterative method for the inverse kinematics of lower-mobility parallel mechanism with three RS or SR chains based on kinematically equivalent mechanism[J]. Mechanism and Machine Theory, 2019, 141: 40-51.
[30] 王倩竹. 咀嚼模拟机器人设计与分析[D]. 长春: 吉林大学, 2014: 15-39.
[31] 谢高鹏. 食品咀嚼模拟机系统的开发与研究[D]. 长春: 吉林大学, 2014: 19-49.
[32] 吴范徐齐, 许蔷, 刘生, 等. 基于咀嚼特性的少自由度咀嚼机器人设计[J]. 机械传动, 2019, 43(8): 52-58.
[33] 温海营, 任翔, 徐卫良, 等. 咀嚼机器人颞下颌关节仿生设计及试验测试[J]. 吉林大学学报(工学版), 2019, 49(3): 943-952.
[34] 任杰. 基于绳索驱动的仿下颌运动机构设计与分析[D]. 大连: 大连理工大学, 2019: 19-27.
[35] TAKANOBU H, TAKANISHI A. Dental robotics and human mode1[C]// 1st International IEE EMBS Conference on Neural Engineering, Capri Island: [s.n.], 2003: 671-674.
[36] MEYER C, KAHN J L, LAMBERT A, et al. Development of a static simulator of the mandible[J]. Journal of Cranio-Maxillofacial Surgery, 2000, 28(5): 278-286.
[37] XU W L, TORRANCE J D, CHEN B Q, et al. Kinematics and experiments of a life-sized masticatory robot for characterizing food texture[J]. IEEE Transactions on Industrial Electronics, 2008, 55(5): 2 121-2 132.
[38] XU W L, PAP J S, BRONLUND J. Design of a Biologically Inspired Parallel Robot for foods chewing[J]. IEEE Transactions on Industrial Electronics, 2008, 55(2): 832-841.
[39] WEN Hai-ying, CONG Ming, WANG Gui-fei. Experimental verification of workspace and mouth-opening movement of a redundantly actuated humanoid chewing robot[J]. Industrial Robot: An International Journal, 2015, 42(5): 406-415.
[40] 汤文杰. 六自由度咀嚼机设计与实现[D]. 成都: 电子科技大学, 2017: 11-19.
[41] SUN C, XU W L, BRONLUND J E, et al. Dynamics and compliance control of a linkage robot for food chewing[J]. IEEE Transactions on Industrial Electronics, 2014, 61(1): 377-386.
[42] 杜婧. 仿下颌运动机器人的样机设计和实验研究[D]. 大连: 大连理工大学, 2014: 65-81.
[43] 温海营, 丛明, 王贵飞, 等. 冗余驱动仿下颌运动机器人工作空间分析及试验验证[J]. 机器人, 2015, 37(3): 286-297.
[44] WANG Gui-fei, CONG Ming, XU Wei-liang, et al. A biomimetic chewing robot of redundantly actuated parallel mechanism[J]. Industrial Robot: An International Journal, 2015, 42(2): 103-109.
[45] KALANI H, MOGHIMI S, AKBARZADEH A. Toward a bio-inspired rehabilitation aid: sEMG-CPG approach for online generation of jaw trajectories for a chewing robot[J]. Biomedical Signal Processing & Control, 2019, 51: 285-295.
[46] LIU Jing-jing, CUI Ying, CHEN Yi-zhou, et al. Evaluation of food fineness by the bionic tongue distributed mechanical testing device[J]. Sensors (Basel, Switzerland), 2018, 18(12): 4 250.
[47] 韩敬虎. 咀嚼吞咽一体化仿生机器人研究[D]. 无锡: 江南大学, 2016: 16-25.
[48] 毛倩. 仿咀嚼食品质地评价及咀嚼效能研究[D]. 长春: 吉林大学, 2016: 4-5.
[49] SALLES C, TARREGA A, MIELLE P, et al. Development of a chewing simulator for food breakdown and the analysis of in vitro flavor compound release in a mouth environment[J]. Journal of Food Engineering, 2007, 82(2): 189-198.
[50] 孙钟雷, 孙永海, 万鹏, 等. 仿生咀嚼装置设计与试验[J]. 农业机械学报, 2011, 42(8): 214-218.
[51] WODA A, MISHELLANY-DUTOUR A, BATIER L, et al. Development and validation of a mastication simulator[J]. Journal of Biomechanics, 2010, 43(9): 1 667-1 673.
[52] MISHELLANY-DUTOUR A, PEYRON M A, CROZE J, et al. Comparison of food boluses prepared in vivo and by the AM2 mastication simulator[J]. Food Quality & Preference, 2010, 22(4): 326-331.
[53] PEYRON M A, SANTE-LHOUTELLIER V, DARDEVET D, et al. Addressing various challenges related to food bolus and nutrition with the AM2 mastication simulator[J]. Food Hydrocolloids, 2019, 97: 105229.1-105229.11.
[54] 陈莉, 孙永海, 刘晶晶, 等. 基于肌电信号的仿齿压头对食品质地的影响[J]. 农业机械学报, 2014, 45(8): 248-253, 281.
[55] 孙钟雷, 孙永海, 方旭君, 等. 仿齿冠压头破碎物料试验及模拟[J]. 吉林大学学报(工学版), 2011, 41(增刊2): 236-240.
[56] PARK D J, CHUN Y G, LEE S H, et al. Development of teeth probe for analysis of correlation between mechanical and sensory properties of apples[J]. Journal of Texture Studies, 2016, 47(6): 523-529.
[57] MEULLENET J F, GANDHAPUNENI R K. Development of the BITE Master II and its application to the study of cheese hardness[J]. Physiology & Behavior, 2006, 89(1): 39-43.
[58] 杨杰. 仿咀嚼机实验平台的研究设计及食品质地分析[D]. 长春: 吉林大学, 2018: 32-90.
[59] 刘爱阳. 基于单片机技术的牛肉自动控制检测系统研究[D]. 长春: 吉林大学, 2016: 70-75.
[60] LEE S J, KIM B K, CHUN Y G, et al. Design of mastication robot with life-sized linear actuator of human muscle and load cells for measuring force distribution on teeth[J]. Mechatronics, 2018, 51: 127-136.
[61] POINOT P, ARVISENET G, GRUA-PRIOL J, et al. Use of an artificial mouth to study bread aroma[J]. Food Research International, 2009, 42(5): 717-726.
[62] 孙钟雷, 孙永海, 李宇, 等. 仿生食品质构仪设计与试验[J]. 农业机械学报, 2012, 43(1): 230-234.
[63] 王璐. 咀嚼效能分析及仿咀嚼机食品质地评价方法研究[D]. 长春: 吉林大学, 2016: 58-69.
[64] ALEMZADEH K, JONES S B, DAVIES M, et al. Development of a chewing robot with built-in Humanoid Jaws to simulate mastication to quantify robotic agents release from chewing gums compared to human participants[J]. IEEE Transactions on Biomedical Engineering, 2020, 68 (2): 492-504.
[65] TARREGA A, YVEN C, SEMONE E, et al. Effect of oral physiology parameters on in-mouth aroma compound release using lipoprotein matrices: An in vitro approach[J]. Foods (Basel, Switzerland), 2019, 8(3): 106.
[66] 杨继, 田永峰, 段沅杏, 等. 一种全仿真模拟咀嚼机: CN206057269U[P]. 2017-03-29.
[67] 李怀奇, 邱建华, 李国政, 等. 卷烟烟气在模拟口腔环境中pH值的测定[J]. 食品与机械, 2019, 35(4): 60-63, 162.
[68] 高茜, 段沅杏, 赵伟, 等. 一种口含型烟草制品对牙龈卟啉单胞菌影响的检测方法: CN107630072A[P]. 2018-01-26.
[69] 高茜, 杨继, 赵伟, 等. 一种胶基型烟草制品对牙龈卟啉单胞菌影响的检测方法: CN107513580A[P]. 2017-12-26.