Abstract
In this paper, the 3D printing characteristics of starch, hydrophilic colloid, meat and other food materials were reviewed. The effects of printing parameters such as printing temperature, printing speed, internal filling rate and printing nozzle diameter on 3D product quality were analyzed, so as to provide useful reference for the research of food 3D printing technology and the development of printing food materials.
Publication Date
6-28-2021
First Page
219
Last Page
223
DOI
10.13652/j.issn.1003-5788.2021.06.036
Recommended Citation
Peng-hui, ZHANG; Hao-yu, ZHOU; Yuan-yang, NIE; and Bo, LI
(2021)
"Effects of raw material characteristics and printing parameters on product quality infood 3D printing,"
Food and Machinery: Vol. 37:
Iss.
6, Article 36.
DOI: 10.13652/j.issn.1003-5788.2021.06.036
Available at:
https://www.ifoodmm.cn/journal/vol37/iss6/36
References
[1] 贲宗友, 施宗情, 孙艳辉. 3D打印在食品中的应用研究进展[J]. 轻工科技, 2018, 34(9): 4-6.
[2] GODOI F C, PRAKASH S, BHANDARI B R, et al. 3D printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering, 2016, 179: 44-54.
[3] 杨来侠, 杨繁荣, 桂玉莲, 等. 基于可食用材料的3D打印技术应用进展[J]. 食品与机械, 2018, 34(12): 147-151.
[4] GHOLAMIPOUR-SHIRAZI A, NORTON I T, MILLS T. Designing hydrocolloid based food-ink formulations for extrusion 3D printing[J]. Food Hydrocolloids, 2019, 95: 161-167.
[5] BALEMANS C, LOOIJMANS S F, GROSSO G G, et al. Numerical analysis of the crystallization kinetics in SLS[J]. Additive Manufacturing, 2020, 33: 101126.
[6] WENG Zi-xiang, ZHOU Yu, LIN Weng-xiong, et al. Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer[J]. Composites Part A: Applied Science & Manufacturing, 2020, 88: 20169.
[7] BI Hong-jie, REN Ze-chun, YE Gao-yuan, et al. Fabrication of cellulose nanocrystal reinforced thermoplastic polyurethane/polycaprolactone blends for three-dimension printing self-healing nanocomposites[J]. Cellulose, 2020, 27(14): 8 011-8 026.
[8] GOMES C M, RAMBO C R, OLIVEIRA A P N D, et al. Colloidal processing of glass: Ceramics for laminated object manufacturing[J]. Journal of the American Ceramic Society, 2010, 92: 1 186-1 191.
[9] LIU Zhen-bin, ZHANG Min, BHANDARI B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science & Technology, 2017, 88(12): 83-94.
[10] 张一帆, 张佳颖, 徐铭恩, 等. 基于同轴细胞打印双网络生物墨水优化及类血管支架的打印[J]. 中国组织工程研究, 2020, 24(22): 3 553-3 558.
[11] 安国进. 金属增材制造技术在航空航天领域的应用与展望[J]. 现代机械, 2019(3): 39-43.
[12] 林家超, 吴雄, 杨文, 等. 3D打印建筑材料性能影响因素与分析研究[J]. 新型建筑材料, 2017, 44(10): 62-65.
[13] 张德龙, 张昊, 张晓刚, 等. 3D打印铸造模型的应用研究与展望[J]. 现代制造技术与装备, 2019(11): 142-144.
[14] 冯传兴, 周泉城. 马铃薯淀粉3D打印工艺及其3D打印结构的研究[J]. 现代食品科技, 2017(9): 183-188.
[15] VADODARIA S, MILLS T. Jetting-based 3D printing of edible materials[J]. Food Hydrocolloids, 2020, 106: 105857.
[16] GARCA-SEGOVIA P, GARCA-ALCARAZ V, BALASCH-PARISI S, et al. 3D printing of gels based on xanthan/konjacgums[J]. Innovative Food Science and Emerging Technologies, 2020, 64: 102343.
[17] 何芃, 郭韵, 欧阳叶郁, 等. 基于巧克FDM力工艺的3D打印技术的研究[J]. 软件, 2020, 41(1): 36-41.
[18] JIANG Hao, ZHENG Lu-yao, ZOU Yan-hui, et al. 3D food printing: Main components selection by considering rheological properties[J]. Critical Reviews in Food Science and Nutrition, 2019, 59(14): 2 335-2 347.
[19] SEVERINI C, AZZOLLINI D, ALBENZIO M, et al. On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects[J]. Food Research International, 2018, 106: 666-676.
[20] VOON S L, AN J, WONG G, et al. 3D food printing: A categorised review of inks and their development[J]. Virtual and Physical Prototyping, 2019, 14: 1-16.
[21] 高海生. 3D打印的发展现状及前景展望[J]. 中国战略新兴产业, 2017(44): 32.
[22] 徐书洁. 3D打印人造牛肉的关键技术研究[D]. 南京: 南京师范大学, 2017: 33-34.
[23] ALAIN L B, CHIEREGATO M B, PATRICIA L B. 3D printing of foods: Recent developments, future perspectives and challenges[J]. Current Opinion in Food Science, 2020, 14: 1603508.
[24] 雍雅萍, 高翠霞, 王艳茹, 等. 不同品种小麦粉品质特性对馒头品质的影响[J]. 食品与机械, 2020, 36(11): 27-32, 62.
[25] 石晶红, 郝水源, 郭淑文. 山药薏米芡实混合粉对小麦粉加工品质的影响[J]. 食品与机械, 2021, 37(1): 199-203.
[26] 余阳玲, 仝兆斌, 江昊, 等. 淀粉原料3D打印特性[J]. 食品与发酵工业, 2020, 46(3): 194-200.
[27] YANG Fan, ZHANG Min, FANG Zhong-xiang, et al. Impact of processing paremeters and post-treatment on the shape accuracy of 3D-printed baking dough[J]. International Journal of Food Science and Technology, 2019, 54(1): 68-74.
[28] LIU Yao-wen, LIANG Xue, AHMED S, et al. Properties of 3D printed dough and optimization of printing parameters[J]. Innovative Food Science and Emerging Technologies, 2019, 54: 9-18.
[29] LILLE M, NURMELA A, NORDLUND E, et al. Applicability of protein and fiber-rich food materials in extrusion-based 3D printing[J]. Journal of Food Engineering, 2018, 220: 20-27.
[30] LIU Li-li, MENG Yuan-yuan, DAI Xiao-ning, et al. 3D Printing complex egg white protein objects: Properties and optimization[J]. Food and Bioprocess Technology, 2019, 12: 267-279.
[31] FENG Chuan-ning, WANG Qi, LI Hui, et al. Effects of pea protein on the properties of potato starch-based 3D printing materials[J]. International Journal of Food Engineering, 2018, 14(3): 1-10.
[32] LIU Zhen-bin, ZHANG Min, BHANDARI B. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes[J]. International Journal of Biological Macromolecules, 2018, 117: 1 179-1 187.
[33] LIU Zhen-bin, BHANDARI B, PRAKASH S, et al. Creation of internal structure of mashed potato construct by 3D printing and its textural properties[J]. Food Research International, 2018, 111(9): 534-543.
[34] KIM H W, BAE H, PARK H J. Classification of the printability of selected food for 3D printing: Development of an assessment method using hydrocolloids as reference material[J]. Journal of Food Engineering, 2017, 215: 23-32.
[35] WARNER E L, NORTON I T, MILLS T B. Comparing the viscoelastic properties of gelatin and different concentrations of kappa-carrageenan mixtures for additive manufacturing applications[J]. Journal of Food Engineering, 2019, 246: 58-66.
[36] 骆云龙, 马志勇, 张家彬, 等. 基于琼脂—明胶颗粒的海藻酸钠三维打印工艺研究[J]. 机械制造, 2019, 57(8): 71-75.
[37] DONG Xiu-ping, PAN Yu-xi, ZHAO Wen-yu, et al. Impact of microbial transglutaminase on 3D printing quality of Scomberomorus niphonius surimi[J]. LWT-Food Science and Technology, 2020, 124: 109123.
[38] WANG Lin, ZHANG Min, BHANDARI B, et al. Investigation on fish surimi gel as promising food material for 3D printing[J]. Journal of Food Engineering, 2018, 220: 101-108.
[39] DONG Xiu-ping, HUANG Ying, PAN Yu-xi, et al. Investigation of sweet potato starch as a structural enhancer for three-dimensional printing of Scomberomorus niphonius surimi[J]. Journal of Texture Studies, 2019, 50: 316-324.
[40] DICK A, BHANDARI B, PRAKASH S, et al. Post-processing feasibility of composite-layer 3D printed beef[J]. Meat Science, 2019, 153: 9-18.
[41] DICK A, BHANDARI B, DONG X, et al. Feasibility study of hydrocolloid incorporated 3D printed pork as dysphagia food[J]. Food Hydrocolloids, 2020, 107: 105940.
[42] 王伯华, 龙娇丽, 雷颂, 等. 谷氨酰胺转氨酶及辅料对珍珠蚌肉糜凝胶性质的影响[J]. 食品与机械, 2016, 32(9): 12-16.
[43] LIU Yao-wei, YU Yun, LIU Chang-shu, et al. Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing[J]. LWT, 2019, 102: 339-346.
[44] LE TOHIC C, O'SULLIVAN J J, DRAPALA K P, et al. Effect of 3D printing on the structure and textural properties of processed cheese[J]. Journal of Food Engineering, 2018, 220: 56-64.
[45] 肖俊勇, 占密勤, 从仁怀, 等. 含中药功能因子巧克力3D打印成型性研究[J]. 食品工业科技, 2019, 40(5): 77-82.
[46] LEE J H, WON D J, KIM H W, et al. Effect of particle size on 3D printing performance of the food-ink system with cellular food materials[J]. Journal of Food Engineering, 2019, 256: 1-8.
[47] ZHU Si-cong, STIEGER M A, ATZE J D G, et al. Extrusion-based 3D printing of food pastes: Correlating rheological properties with printing behaviour[J]. Innovative Food Science & Emerging Technologies, 2019, 58: 102214.
[48] 王浩, 谭畅, 陈静, 等. 魔芋胶对蓝莓凝胶体系3D打印特性的影响[J]. 食品科学, 2019, 40(23): 104-110.