•  
  •  
 

Abstract

To explore the effect on the physicochemical and structural properties of thebamboo shoots dietary fiber (BSDF), square bamboo shoots dietary fiber was used toas raw material to obtain BSDF with different pressure (0, 50, 100, 150, 200 MPa) by dynamic high pressure micro-fluidization (DHPM) treatment. Results showed that as the treatment pressure increases, the particle size of BSDF firstly increased and then decreased. When the treatment pressure was up to 150 MPa, the particle size reached the minimum (370±11) nm. The water holding capacity, oil holding capacity and swelling capacity reached the maximum, which were increased by 47.74%, 50.54% and 61.27% respectively,compared with the untreated group.Infrared spectroscopy analysis showed that the main functional groups of BSDF did not change after DHPM treatment, but the hemicellulose and lignin inside the BSDF degraded and some hydrogen bonds broken. The X-ray diffraction and thermal gravity analysis showed the crystal structure of BSDFdid not change, however, the crystal order decreased, which lead to a decrease in its thermal stability. Microstructure analysis showed that DHPM treatment reduced the size of BSDF particles, roughened the surface, and loosened the structure. And when the processing pressure increased to 200 MPa, the particles agglomerated. Above results shows that DHPM can effectively improve the physicochemical properties of BSDF and has certain application value in modification of dietary fiber.

Publication Date

6-28-2021

First Page

24

Last Page

29

DOI

10.13652/j.issn.1003-5788.2021.06.005

References

[1] 李伟. 金佛山方竹笋产业发展思考[J]. 南方农业, 2013, 7(7): 67-68.
[2] 鲍丽然, 贾中民, 李瑜, 等. 南川金佛山方竹笋营养安全品质和立地土壤评价[J]. 物探与化探, 2018, 42(5): 1 089-1 094.
[3] NIRMALA C, BISHT M S, LAISHRAM M. Bioactive compounds in bamboo shoots: Health benefits and prospects for developing functional foods[J]. International Journal of Food Science and Technology, 2014, 49(6): 1 425-1 431.
[4] 王艳峰, 杨锡洪, 曹峻菡, 等. 膳食纤维调节2型糖尿病血糖作用研究进展[J]. 食品与机械, 2020, 36(10): 6-11, 17.
[5] ELLEUCH M, BEDIGIAN D, ROISEUX O, et al. Dietary fiber and fiber-rich by-products of food processing: Characterization, technological functionality and commercial applications: A review[J]. Food Chemistry, 2011, 124: 411-421.
[6] 郑炯, 陈琪, 曾瑞琪, 等. 竹笋膳食纤维对黄桃果酱品质的影响[J]. 食品与发酵工业, 2019, 45(5): 177-184.
[7] GHADA A S. Dietary fiber, atherosclerosis, and cardiovascular disease[J]. Nutrients, 2019, 11(5): 1 155.
[8] FANG Dong-ya, WANG Qi, CHEN Can-hui. Structural characteristics, physicochemical properties and prebiotic potential of modified dietary fiber from the basal part of bamboo shoot[J]. International Journal of Food Science and Technology, 2020, DOI: org/10.1111/ijfs.14709.
[9] 吴丽萍, 金雅娴, 吴家兴. 毛竹笋膳食纤维提取工艺优化[J]. 黄山学院学报, 2017, 19(3): 62-65.
[10] 王佳, 张颜笑, 郑炯. 酶解处理对竹笋膳食纤维理化特性的影响[J]. 食品与发酵工业, 2016, 42(9): 104-108.
[11] 汪楠, 黄山, 张月, 等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业, 2020, 46(4): 13-18.
[12] 刘玉凌. 物理改性方竹笋膳食纤维理化性能及结构的研究[D]. 重庆: 西南大学, 2016: 16-17.
[13] 万婕, 刘成梅, 李俶, 等. 动态高压微射流作用对膳食纤维结晶结构的影响[J]. 高压物理学报, 2012, 26(6): 639-644.
[14] 熊慧薇. 瞬时高压作用对膳食纤维改性的影响[D]. 南昌: 南昌大学, 2006: 11-13.
[15] 刘成梅. 瞬时高压作用的机制及杀菌和纤维改性研究[D]. 南昌: 南昌大学, 2006: 13-15.
[16] 江文韬, 林彤, 陈灿辉, 等. 响应面法优化百香果壳膳食纤维的高压微射流改性工艺[J]. 福建农业科技, 2020(1): 11-16.
[17] 曹慧慧, 王磊, 赵海涛, 等. 动态高压微射流制备玉米芯可溶性膳食纤维工艺及功能特性研究[J]. 安徽农业科学, 2019, 47(7): 175-178.
[18] LIU Cheng-mei, LIANG Rui-hong, DAI Tao-tao, et al. Effect of dynamic high pressure micro-fluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids, 2016, 57: 55-56.
[19] CHEN Huan-huan, ZHAO Chun-mei, LI Jie, et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT-Food Science and Technology, 2018, 93: 204-211.
[20] WANG Tao, SUN Xiu-hua, ZHOU Zhan-xiang,et al. Effects of micro-fluidization process on physicochemical properties of wheat bran[J]. Food Research International, 2012, 48(2): 742-747.
[21] DUBEY R, TOH Y R, YEH A I. Enhancing cellulose functionalities by size reduction using media-mill[J]. Scientific Reports, 2018, 8: 11343.
[22] 陈媛. 微生物发酵和动态超高压微射流技术对膳食纤维的性质和结构的影响[D]. 南昌: 南昌大学, 2011: 20-23.
[23] 丁莎莎, 黄立新, 张彩虹, 等. 高压均质和胶体磨改性对油橄榄果渣水不溶性膳食纤维性能的影响[J]. 食品与机械, 2017, 33(8): 10-13, 18.
[24] 涂宗财, 陈丽莉, 王辉, 等. 发酵与动态高压微射流对豆渣膳食纤维理化特性的影响[J]. 高压物理学报, 2014, 28(1): 113-119.
[25] 王欢, 佟晓红, 刘龄, 等. 高压微射流对生物解离大豆膳食纤维特性的影响[J]. 农业机械学报, 2018, 49(8): 346-352.
[26] 王庆玲, 朱莉, 孟春棉, 等. 番茄皮渣膳食纤维的理化性质及其结构表征[J]. 现代食品科技, 2014, 30(11): 60-64.
[27] 李安平, 谢碧霞, 钟秋平, 等. 不同粒度竹笋膳食纤维功能特性研究[J]. 食品工业科技, 2008(3): 83-85.
[28] DONG Ji-lin, WANG Lei, LU Jing, et al. Structural, antioxidant and adsorption properties of dietary fiber from foxtail millet (Setariaitalica) bran[J]. Journal of the Science of Food and Agriculture, 2019, 99(8): 3 886-3 894.
[29] 宋玉. 竹笋膳食纤维的改性及在中式香肠中的应用研究[D]. 贵阳: 贵州大学, 2018: 51-52.
[30] KABR M M, WANG H, LAU K T, et al. Effects of chemical treatments on hemp fiber structure[J]. Applied Surface Science, 2013, 276: 13-23.
[31] 游玉明, 王昱圭, 张洁, 等. 高压均质处理对竹笋膳食纤维理化性质及结构的影响[J/OL]. 食品与发酵工业. (2020-12-08)[2020-12-10]. https://doi.org/10.13995/j.cnki.11-1802/ts.025880.
[32] SONG Yu, SU Wei, MU Ying-chun. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J]. International Journal of Food Properties, 2018, 21(1): 1 219-1 232.
[33] 刘伟, 李火坤, 刘成梅, 等. 基于FLUENT的动态高压微射流内部孔道流场的数值模拟[J]. 高压物理学报, 2012, 26(1): 113-120.
[34] 李璐, 黄亮, 苏玉, 等. 超微化雷竹笋膳食纤维的结构表征及其功能特性[J]. 食品科学, 2019, 40(7): 74-81.
[35] 王威岗, 韦杰, 董长青. 木质纤维热解的热重和反应动力学研究[J]. 可再生能源, 2007(5): 23-26.
[36] 张洪勋, 李林. 纤维素类生物质热解技术研究进展[J]. 北京联合大学学报(自然科学版), 2004(1): 16-19.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.