Abstract
Objective: In order to meet the refined requirements of temperature during the drying process of Penaeus vannamei freezing point and low temperature heat pump. Methods: A heat pump drying control system based on Siemens S7-300 PLC was designed. The system adopted a fuzzy control strategy. And a fuzzy controller with “two-dimensional input and one-dimensional output” was designed using the fuzzy logic toolbox of Matlab. According to the drying process of prawns, a data collection program and an execution program were designed to control the temperature of the drying oven. And the drying process was monitored and managed through the human-machine interface to realize automatic temperature control. Results: The temperature difference of freezing point temperature drying oven under fuzzy control was within 0.8 ℃, and that of low temperature drying oven was within 1.1 ℃. Compared with PID control, the temperature fluctuation range was reduced by 46.7% and 57.7% respectively. The dry test results of Penaeus vannamei showed that the freezing point and low temperature heat pump drying could effectively remove the moisture in the prawn, and better retain its color, whcih has certain advantages in shrinkage and rehydration. Conclusion: The control system operated stably and could quickly adjust the temperature of the drying oven. The control precision of the control system was high. And the control effect of this system was good.
Publication Date
7-28-2021
First Page
94
Last Page
101
DOI
10.13652/j.issn.1003-5788.2021.07.015
Recommended Citation
Guo-jie, WANG; Gang, MU; Jin, HUO; Qian, ZHANG; and Guo-chen, ZHANG
(2021)
"Design and experiment of Penaeus vannamei freezing point and low temperature heat pump drying control system based on fuzzy control,"
Food and Machinery: Vol. 37:
Iss.
7, Article 15.
DOI: 10.13652/j.issn.1003-5788.2021.07.015
Available at:
https://www.ifoodmm.cn/journal/vol37/iss7/15
References
[1] 农业农村部渔业渔政管理局. 中国渔业统计年鉴[M]. 2020版. 北京: 中国农业出版社, 2020: 22-23.
[2] 岑琦琼, 张燕平, 戴志远, 等. 水产品加工干燥技术的研究进展[J]. 食品研究与开发, 2011, 32(11): 156-160.
[3] 沈嘉森, 陈晓婷, 苏永昌, 等. 干燥过程对水产干制品品质的影响[J]. 食品安全质量检测学报, 2020, 11(22): 8 186-8 193.
[4] ZHANG Min, CHEN Hui-zhi, MUJUMDAR A S, et al. Recent developments in high-quality drying of vegetables, fruits, and aquatic products[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(6): 1 239-1 255.
[5] 于鹏. 基于海珍品的双阶段冰—低温热泵干燥系统的研究[D]. 大连: 大连海洋大学, 2015: 8-9.
[6] 施建兵, 谢晶. 冰温保鲜技术在水产品中的应用[J]. 广东农业科学, 2012, 39(17): 96-99.
[7] 庞文燕, 万金庆, 姚志勇, 等. 不同真空压力对冰温干燥罗非鱼片品质的影响[J]. 食品科学, 2013, 34(21): 5-9.
[8] 赵海波, 彭鑫, 吴坤, 等. 真空冷冻干燥在线测试系统设计与测试[J]. 食品与机械, 2020, 36(1): 116-120.
[9] 吴燕燕, 石慧, 李来好, 等. 水产品真空冷冻干燥技术的研究现状与展望[J]. 水产学报, 2019, 43(1): 197-205.
[10] 刘志鸣, 万金庆, 王建民. 日本冰温技术发展史略[J]. 制冷与空调(四川), 2005, 21(3): 70-74.
[11] 山根昭美, 郭海元. 冰温干燥食品[J]. 制冷, 1987, 6(4): 64-67.
[12] 张哲, 张秋月, 王怀文, 等. 冰温贮藏对采后葡萄果实品质的影响[J]. 食品与机械, 2019, 35(5): 156-159.
[13] 陈青云, 施文正, 万金庆, 等. 三种干燥方式对罗非鱼片风味物质的影响[J]. 食品工业科技, 2014, 35(16): 323-327, 333.
[14] 王丰, 李保国, 申江, 等. 胡萝卜冰温干燥实验研究[J]. 食品与发酵工业, 2012, 38(1): 101-104.
[15] 王丰. 胡萝卜冰温微波真空干燥研究[D]. 上海: 上海理工大学, 2012: 10-15.
[16] 厉建国, 万金庆, 赵彦峰. 冰温真空干燥系统的设计与实现[J]. 食品与机械, 2017, 33(11): 89-91, 156.
[17] 倪超, 李娟玲, 丁为民, 等. 全封闭热泵干燥装置监控系统的设计与试验[J]. 农业工程学报, 2010, 26(10): 134-139.
[18] 母刚, 张国琛. 基于LabVIEW的水产品热泵干燥测试系统设计[J]. 渔业现代化, 2010, 37(2): 47-50.
[19] 陈岩, 杜晓明. 模糊PID控制在温室环境中的应用[J]. 农机化研究, 2010, 32(8): 173-177.
[20] 刘江平, 金心怡. 基于模糊控制的岩茶做青系统设计[J]. 食品与机械, 2020, 36(8): 93-97, 122.
[21] 张建锋. 热泵干燥装置监控系统的设计与研究[D]. 南京: 南京农业大学, 2008: 34-35.
[22] 王伟华, 王海, 何思鲁, 等. 南美白对虾太阳能干燥能耗参数优化及中试[J]. 农业工程学报, 2016, 32(18): 271-278.
[23] 母刚, 张国琛, 邵亮. 热泵干燥海参的初步研究[J]. 渔业现代化, 2007, 34(5): 47-50.
[24] 邱澄宇. 水产品加工新技术与营销[M]. 北京: 金盾出版社, 2011: 93-94.
[25] 李玉环. 水产品加工技术[M]. 北京: 中国轻工业出版社, 2010: 92-97.