Abstract
Using a combination of research literature review and actual cases, the characteristics of phase change materials and the refrigeration principle of cold storage with phase change materials were analyzed, and their respective advantages were fully utilized in practical applications to achieve a more ideal effect.
Publication Date
7-28-2021
First Page
227
Last Page
232
DOI
10.13652/j.issn.1003-5788.2021.07.037
Recommended Citation
Jin-tao, SUN and Jing, XIE
(2021)
"Research progress of phase change cold storage materials and their application in cold storage,"
Food and Machinery: Vol. 37:
Iss.
7, Article 37.
DOI: 10.13652/j.issn.1003-5788.2021.07.037
Available at:
https://www.ifoodmm.cn/journal/vol37/iss7/37
References
[1] 朱燕媚, 杨伟男. 浅析农产品保鲜冷库发展现状与政策建议[J]. 农机质量与监督, 2020(8): 35-37.
[2] 孙忠宇, 程有凯. 冷库现状及冷库节能途径[J]. 节能, 2007(7): 53-54, 3.
[3] 林卫斌, 周文楠. 商业电价改革政策探讨[J]. 价格理论与实践, 2017(8): 10-14.
[4] 刘金平, 滕林, 陈向阳. 区域供冷与蓄冷技术发展动态[J]. 南方能源建设, 2020, 7(3): 1-5.
[5] 陈放. 蓄能技术在水产品冷库制冷系统中应用与分析[C]// 十三省区市机械工程学会第五届科技论坛论文集. 昆明: 海南省机电工程学校, 2009: 427-433.
[6] ZHAO Yi, ZHANG Xue-lai, XU Xiao-feng. Application and research progress of cold storage technology in cold chain transportation and distribution[J]. Journal of Thermal Analysis and Calorimetry, 2019, 139: 1 419-1 434.
[7] 苏文, 陈汝东. 蓄冷技术在冷库中的应用[J]. 制冷技术, 2002(4): 31-35.
[8] 杨天润. 基于相变材料的冷库储能系统设计及优化[D]. 济南: 山东大学, 2018: 15-25.
[9] 孙静, 陈全, 王希卓, 等. 乙二醇蓄冷库的设计和性能[J]. 保鲜与加工, 2020, 20(1): 66-71.
[10] 郭伟杰. 多温级蓄能制冷系统在冷库中的应用研究[D]. 大连: 大连理工大学, 2008: 17-30.
[11] 吴丽媛, 宋文吉, 肖睿, 等. 相变蓄冷技术在低温冷库系统的应用前景[C]// 第七届全国食品冷藏链大会论文集. 青岛: 中国制冷学会, 2010: 130-136.
[12] GUAN Cheng-yao, LU Hai, ZHANG Liang, et al. Regulation of the output temperature in a novel water heating system using solid graphite as sensible heat thermal energy storage medium: Effects of water tank[J]. Energy Reports, 2020, 6(S7): 160-171.
[13] VIGNESHWARAN K, SODHI G S, GUHA A, et al. Coupling strategy of multi-module high temperature solid sensible heat storage system for large scale application[J]. Applied Energy, 2020, 278: 115665.
[14] 曹琼. 冰蓄冷技术在粮食储存中的应用及发展研究[J]. 中国粮油学报, 2006(3): 345-349.
[15] 江燕涛. 动态冰浆蓄冷湿冷技术在果蔬冷藏中的应用前景分析[J]. 制冷与空调, 2015, 15(10): 5-9, 36.
[16] 包华汕. 低品位热源驱动的热化学再吸附制冷研究[D]. 上海: 上海交通大学, 2011: 98-101.
[17] 吴彤. 镁基无机盐低温相变材料的制备及性能研究[D]. 广州: 华南理工大学, 2020: 2-7.
[18] ZHAO Yi, ZHANG Xue-lai, XU Xiao-feng, et al. Research progress of phase change cold storage materials used in cold chain transportation and their different cold storage packaging structures[J]. Journal of Molecular Liquids, 2020, 319: 114360.
[19] 张紫恒. 半纤维素树脂复合相变蓄冷剂的研制及性能研究[D]. 石家庄: 河北科技大学, 2017: 46-52.
[20] MELONE L, ALTOMARE L, CIGADA A, et al. Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation[J]. Applied Energy, 2012, 89: 339-346.
[21] LEDUCQ D, NDOYE F T, ALVAREZ G. Phase change material for the thermal protection of ice cream during storage and transportation[J]. International Journal of Refrigeration, 2015, 52: 133-139.
[22] 刘升, 范中阳. 一种冷藏保鲜用复合相变蓄冷材料: 11222820.0[P]. 2017-05-17.
[23] 章学来, 徐蔚雯, 刘田田, 等. 月桂酸-癸酸/十四醇-十二烷复合相变储能材料的制备与性能研究[J]. 制冷学报, 2016, 37(1): 60-64.
[24] 陈嘉杰, 徐涛, 方晓明, 等. 膨胀石墨基十二烷复合相变蓄冷材料的性能研究[J]. 工程热物理学报, 2015, 36(6): 1 307-1 310.
[25] ZHAO Yi, ZHANG Xue-lai, XU Xiao-feng, et al. Development of composite phase change cold storage material and its application in vaccine cold storage equipment[J]. Journal of Energy Storage, 2020, 30: 101455.
[26] 班超方, 卢立新, 潘嘹. 冷冻型复合相变蓄冷材料的制备与性能评价[J]. 化工新型材料, 2019, 47(5): 218-221, 226.
[27] 宣子杰, 江燕涛, 王路路. 相变蓄冷技术在小型设备的应用和研究进展[J]. 制冷与空调(四川), 2020, 34(5): 558-564.
[28] 范国滨, 张卫, 刘军. 一种相变蓄冷装置: 20344412.7[P]. 2015-10-07.
[29] 翁立奎, 赵伟杰, 丁玉龙. 一种相变蓄冷系统: 20250748.6[P]. 2017-10-24.
[30] 区自强, 古育辉, 罗明燕. 相变蓄冷装置及采用其的供冷系统: 10974265.0[P]. 2017-01-25.
[31] 葛磊, 余世杰, 陈建辉. 一种基于相变蓄冷机制的高精度液冷渗流控温装置及方法: 10006008.2[P]. 2017-05-24.
[32] 赵建辉. 适用于血液疫苗相变材料的研制以及相变蓄能技术在部队冷藏库集装箱改造中的应用[D]. 北京: 中国人民解放军军事医学科学院, 2010: 14-23.
[33] 吴丽媛, 宋文吉, 高日新, 等. 基于板式冰蓄冷的冷藏库恒温特性的实验研究[J]. 制冷学报, 2012, 33(5): 66-69.
[34] WANG Chang-jiang, HE Zi-tao, LI Hai-long, et al. Evaluation on performance of a phase change material based cold storage house[J]. Energy Procedia, 2017, 105: 3 947-3 952.
[35] ZHU Xian-feng, CHEN Huan-xin, LIU Guo-feng. Affecting factors of cold storage capacity and charging time of hold-over plate[J]. Railway Locomotive and Car, 2002, 24(2): 37-39.
[36] LI Xiao-yan, WANG Xue-lei, MIAO Xin-yue, et al. Numerical simulation study on performance optimization of cold chain cold storage incubator[J]. Energy Saving Technology, 2019, 37(1): 87-90.
[37] 张哲, 王飒飒, 李立民, 等. 蓄冷板冻结与释冷的实验研究[J]. 低温工程, 2015(1): 64-68.
[38] 邵阳, 刘清江, 宋瑞亭, 等. 顶置蓄冷板减少融霜热对冷库温度场的试验研究[J]. 流体机械, 2020, 48(3): 68-72, 78.
[39] 杨凤, 刘清江, 宋瑞亭, 等. 顶置蓄冷板对冷库融霜时库温波动的影响[J]. 食品与机械, 2020, 36(12): 85-89.
[40] 范中阳, 刘升, 武卫东, 等. 蓄冷板摆放方式对冷链宅配过程的影响[J]. 制冷技术, 2017, 37(6): 51-54.
[41] CHENG Chuan-xiao, WANG Fang, TIAN Yong-jia, et al. Review and prospects of hydrate cold storage technology[J]. Renewable & Sustainable Energy Reviews, 2020, 117: 23.
[42] YAN Cheng-chu, WANG Feng-ling, YAN Pan, et al. A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids[J]. Renewable Energy, 2020, 161: 626-634.
[43] 王俊, 曹建军, 张利勇, 等. 基于分布式能源系统的蓄冷蓄热技术应用现状[J]. 储能科学与技术, 2020, 9(6): 1 847-1 857.