Abstract
Objective: 270 milk powder samples from 6 different brands were detected and distinguished by low field nuclear magnetic resonance combined with chemometrics. Methods: Three chemometrics methods of principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and backpropagation artificial neural network (BP-ANN) were used to process experimental data of samples statistically. Results: The PCA method based on three-dimensional projection could not achieve the purpose of rapid identification of milk powder brand; the correct recognition rates of training and prediction sets were 66.1% and 52.2% for the PLS-DA method, respectively, which was low in credibility and challenging to realize the rapid identification of milk powder brand; the correct recognition rates of training and prediction sets of were 99.4% and 100.0% for the BP-ANN method respectively. Conclusion: The combination of low field nuclear magnetic resonance and BP-ANN can identify the milk powder brand well.
Publication Date
8-28-2021
First Page
105
Last Page
109
DOI
10.13652/j.issn.1003-5788.2021.08.017
Recommended Citation
Li, YANG; A-lin, XIA; and Yu, ZHANG
(2021)
"Fast identification of milk powder brand based on low field nuclear magnetic resonance technology,"
Food and Machinery: Vol. 37:
Iss.
8, Article 17.
DOI: 10.13652/j.issn.1003-5788.2021.08.017
Available at:
https://www.ifoodmm.cn/journal/vol37/iss8/17
References
[1] 张养东, 刘月娟, 王宗伟, 等. 牛奶 人类最接近完美的食物[J]. 中国乳业, 2017, 6(6): 21-23.
[2] 侯军伟. 乳业新周期 增长新突破 2020年中国乳业市场分析及2021年市场发展趋势[J]. 中国乳业, 2021(2): 2-7.
[3] CHEN Long, TIAN Yao-qi, SUN Bing-hua, et al. Rapid, accurate, and simultaneous measurement of water and oil contens in the fried starchy system using low-field NMR[J]. Food Chemistry, 2017, 233: 525-529.
[4] 胡潇予, 蓝蔚青, 张楠楠, 等. 低场核磁共振技术在食品领域中的研究进展[J]. 食品工业科技, 2017, 38(6): 386-390, 396.
[5] 刘婷婷, 王涛, 杨翼, 等. 低场核磁共振技术快速检测小球藻油脂含量及其在高通量选育中的应用[J]. 生物工程学报, 2016, 32(3): 285-396.
[6] 张倩, 安明哲, 谢正敏, 等. 浓香型白酒中几种重要风味物质碳稳定同位素的测定[J]. 酿酒科技, 2018(6): 126-129.
[7] 古丽君, 林振华, 吴世玉, 等. 近红外光谱结合线性判别分析方法在食醋品牌鉴别中的应用[J]. 食品与发酵工业, 2019(18): 243-247.
[8] 夏阿林, 夏霞明, 吉琳琳, 等. 低场核磁共振结合化学模式 识别方法判别休闲豆干品牌[J]. 农业工程学报, 2018, 34(10): 282-288.
[9] 张瑜, 谈黎虹, 曹芳, 等. 基于多源光谱分析技术的鱼油品牌判别方法研究[J]. 现代食品科技, 2014(10): 263-267.
[10] 吉琳琳, 夏阿林. 基于低场核磁共振技术的大米水分含量及活度快速预测[J]. 食品与机械, 2018, 34(11): 70-74, 95.
[11] 毛锐, 王欣, 史然. LF-NMR结合化学模式识别鉴别油脂种类及餐饮废弃油脂[J]. 分析测试学报, 2017, 36(3): 372-376.
[12] 陈亚斌, 刘梅红, 王松磊, 等. 低场核磁技术结合化学计量学法快速检测掺假牛奶[J]. 食品与机械, 2016, 32(7): 51-55.
[13] BERTRAM H C. Field gradient CPMG applied on postmortem muscles[J]. Magnetic Resonance Imaging, 2004, 22(4): 557-563.
[14] 周松林, 茆美琴, 苏建徽. 基于主成分分析与人工神经网 络的风电功率预测[J]. 电网技术, 2011, 35(9): 128-132.
[15] 施丰成, 李东亮, 冯广林, 等. 基于近红外光谱的PLS-DA算法判别烤烟烟叶产地[J]. 烟草科技, 2013(4): 56-59.
[16] 陆婉珍, 袁洪福, 徐广通, 等. 现代近红外光谱分析技术[M]. 北京: 石油化工出版社, 1999.
[17] HAGAN M T, M MENHA J. Training multilayer networks with the Marquardt algorithm[J]. IEEE Transactions on Neural Networks, 1994, 6(5): 989-993.
[18] GUTIERREZ-OSUNA R. Pattern analysis for machine olfaction: A review[J]. IEEE Sensors Journal, 2002(2): 189-202.