Abstract
Objective: This study aimed to effectively utilize a large amount of dietary fiber andpectic polysaccharides in okra fermented wine pomace and turn waste into treasure. Methods: The processing technology and related characteristics of okra dietary fiber ultrafine powder were studied by wet ultrafine grinding and spray drying technology. Results: The results showed that okra fermented wine pomace was treated by colloid mill three times; then homogenized by high-pressure homogenizer for three times with 40 MPa of the homogenization pressure; after homogenization, spray drying was made with 210 ℃ in the inlet air temperature, 40 Hz of the fan frequency, solids content 7% of the pulp, and the feeding speed was 1 000 mL/h. The related properties of dietary fiber ultrafine powders from okra fermented wine pomace were tested. The results showed that the water holding capacity was 10.5%, moisture content was 16.5%, bulk density was 0.24 g/mL, tap density was 0.33 g/mL, compressibility was 28%, angle of repose was 52.8°, and ash content was 3.31%. Conclusion: Compared with the traditional enzyme treatment or alkali treatment, dietary fiber ultrafine powder preparation technology can effectively increase dietary fiber content, which can meet the requirements of high-quality dietary fiber.
Publication Date
8-28-2021
First Page
201
Last Page
206
DOI
10.13652/j.issn.1003-5788.2021.08.034
Recommended Citation
Xin, LUO; Yan-qiang, ZHOU; Guang-bin, WU; and Fa-he, CHEN
(2021)
"Study on preparation technology and properties of dietary fiber ultrafine powders from okra fermented wine pomace,"
Food and Machinery: Vol. 37:
Iss.
8, Article 34.
DOI: 10.13652/j.issn.1003-5788.2021.08.034
Available at:
https://www.ifoodmm.cn/journal/vol37/iss8/34
References
[1] NIPAPORN S, LEONARDMC S, RENKO D V, et al. Physicochemical properties of pectins from okra (Abelmoschus Esculentus L. Moench)[J]. Food Hydrocolloids, 2010, 24(1): 35-41.
[2] 高晗. 水提和碱提法制备黄秋葵多糖及其对肠道菌群的影响[D]. 合肥: 合肥工业大学, 2019.
[3] 刘晓霞. 黄秋葵花果胶多糖的提取工艺及其性质的研究[D]. 杭州: 浙江大学, 2014.
[4] ARAPITSAS P. Identification and quantification of polyphenolic compounds from okra seeds and skins[J]. Food Chemistry, 2008, 110(4): 1 041-1 045.
[5] 李兰, 苏绍洁. 黄秋葵蔬菜酒发酵工艺研究[J]. 酿酒科技, 2017(8): 82-85.
[6] 高伦江, 尹旭敏, 李晓英, 等. 黄秋葵发酵酒澄清工艺研究[J]. 西南农业学报, 2013, 26(6): 2 497-2 502.
[7] STEPHEN A M, CHAMP M M J, CLORAN S J, et al. Dietary fibre in Europe: Current state of knowledge on definitions, sources, recommendations, intakes and relationships to health[J]. Nutrition Research Reviews, 2017, 30(2): 149-190.
[8] MAPHOSA Y, JIDEANI V A. Dietary fiber extraction for human nutrition: A review[J]. Food Reviews International, 2016, 32(1): 98-115.
[9] TALUKDER S, SHARMA D P. Development of dietary fiber rich chicken meat patties using wheat and oat bran[J]. Journal of Food Science and Technology, 2010, 47(2): 224-229.
[10] FULLER S, BECK E, SALMAN H, et al. New horizons for the study of dietary fiber and health: A review[J]. Plant Food for Human Nutrition, 2016, 71(1): 1-12.
[11] ARTISS J D, BROGAN K, BRUCAL M, et al. The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats[J]. Metabolism: Clinical and Experimental, 2006, 55(2): 195-202.
[12] SALMAS G, DEVRIES J W, PLANK D. Challenges for dietary fiber: Benefits and costs of new US regulations[J]. Cereal Foods World, 2017, 62(3): 88-94.
[13] MARIN F R, SOLER-RIVAS C, BENAVENTE-GARCIA O, et al. By-products from different citrus processes as a source of customized functional fibres[J]. Food Chemistry, 2007, 100(2): 736-741.
[14] MEHTA N, AHLAWAT S S, SHARMA D P, et al. Novel trends in development of dietary fiber rich meat products: A critical review[J]. Journal of Food Science and Technology Mysore, 2015, 52(2): 633-647.
[15] 李天, 颜玲, 李沛军, 等. 超高压和超微粉碎改性对梨渣膳食纤维的影响[J]. 食品研究与开发, 2018, 39(23): 18-23.
[16] 谢凤英, 赵玉莹, 雷宇宸, 等. 超高压均质处理的米糠膳食纤维粉对面筋蛋白结构的影响[J]. 中国食品学报, 2020, 20(11): 115-120.
[17] WAN Jie, LIU Cheng-mei, LIU Wei, et al. Optimization of instant edible films based on dietary fiber processed with dynamic high pressure microfluidization for barrier properties and water solubility[J]. LWT-Food Science and Technology, 2015, 60: 603-608.
[18] 付晓康, 苏玉, 黄亮, 等. 蒸汽爆破-超微粉碎对米糠膳食纤维结构和功能性质的影响[J]. 中国粮油学报, 2020, 35(4): 142-149.
[19] 吴长玲, 陈鹏, 李顺秀, 等. 空化射流条件下豆渣不溶性膳食纤维结构与功能性研究[J]. 农业机械学报, 2021, 52(3): 350-356.
[20] 吴光斌, 周彦强, 陈发河. 黄秋葵发酵酒渣中果胶多糖的提取及理化性质分析[J]. 食品工业科技, 2020, 41(19): 157-165.
[21] 陈发河, 周彦强, 吴光斌. 黄秋葵发酵酒渣果胶多糖的流变学性质[J]. 食品科学, 2020, 41(22): 64-73.
[22] 郑其良, 钱志伟. 斯托克斯(Stokes)定律在混浊型饮料中的应用[J]. 饮料工业, 1998, 9(1): 24-26.
[23] 食品安全国家标准审评委员会. 食品安全国家标准 饮料: GB 7101—2015[S]. 北京: 国家卫生和计划生育委员会, 2015.
[24] 刘春泉, 宋江峰, 章英, 等. 甘薯叶提取物喷雾干燥工艺研究[J]. 食品科学, 2011, 32(6): 45-48.
[25] 钟芳, 王璋, 许时婴. 喷雾干燥条件对豆粉速溶性的影响[J]. 食品工业科技, 2003(12): 17-20.
[26] 苏东晓, 张名位, 侯方丽, 等. 速溶龙眼粉加工的酶解提取与喷雾干燥工艺优化[J]. 农业工程学报, 2009, 25(8): 268-274.
[27] CHEN Qing-chun, KOH H K, PARK J B. Color evaluation of red pepper powder[J]. Transactions of the Asae, 1999, 42(3): 749-754.