Abstract
Objective: The contents of tea polyphenol monomer, caffeine (CAF), total polyphenols acid (TPC) and total flavonoids (TFC) in 26 kinds of commercial Sichuan dark tea (S1~S26) were analyzed, and the in vitro antioxidant activities were investigated, to provide a theoretical basis for the quality evaluation of Sichuan dark tea. Methods: Gradient elution was used to analyze the content of tea polyphenol monomer and caffeine. The contents of TPC and TFC were determined by the folin phenol method and chemical analysis method, respectively. The antioxidant activity was evaluated by DPPH and ABTS radical scavenging capacity. Results: The content of gallic acid (GA), gallocatechin (GC), epigallocatechin (EGC), catechin (C), epicatechin (EC), epigallocatechin gallate (EGCG), gallocatechin gallate (GCG), epicatechin gallate, catechin gallate (CG), caffeine (CAF), total polyphenols acid (TPC), total flavonoids (TFC) were 0.26~19.64, 0.72~4.73, 0.00~20.28, 0.00~0.95, 0.00~6.06, 0.32~9.44, 0.62~63.12, 0.29~17.08, 0.21~1.81, 9.53~44.43, 20.96~279.05 and 7.92~17.49 mg/g, respectively. The free radical scavenging activity of ABTS was 33.49~232.87 mg/g based on a water-soluble VE equivalent. Moreover, that of DPPH was 45.26~237.59 mg/g correlation analysis results showed that DPPH scavenging abilities positively correlated with the ten monomers, CAF, TPC, and TFC (P<0.05 or P<0.01). However, ABTS radical scavenging abilities positively correlated with the contents of GC, GA, and CAF (P<0.01), also positively correlated with TPC and TFC (P<0.05). Conclusion: PCA results showed that the cumulative contribution rate of EGCG, C and TPC was 87.566%. According to the comprehensive analysis, S16, S23 and S19 had higher scores, implying relatively better quality. The variations of the results should be attributed to the raw materials, production technology, and storage conditions of dark tea.
Publication Date
8-28-2021
First Page
24
Last Page
32
DOI
10.13652/j.issn.1003-5788.2021.08.004
Recommended Citation
Bo-yu, ZHU; Chen, XIA; Ke-bin, LUO; Yong-qing, ZHU; Xiao-bo, TANG; and Jian, CHEN
(2021)
"Active components, antioxidant capacity and quality evaluation of Sichuan dark tea,"
Food and Machinery: Vol. 37:
Iss.
8, Article 4.
DOI: 10.13652/j.issn.1003-5788.2021.08.004
Available at:
https://www.ifoodmm.cn/journal/vol37/iss8/4
References
[1] 宛晓春, 李大祥, 张正竹, 等. 茶叶生物化学研究进展[J]. 茶叶科学, 2015, 35(1): 1-10.
[2] 隋世江, 韩京峰, 隽英华. 超声波辅助提取绿茶中茶多酚的方法研究[J]. 辽宁农业科学, 2019, 5(3): 22-25.
[3] 葛华, 吴峰, 赵安东, 等. 茶多酚抗菌抗炎及菌群调节作用的研究进展[J]. 生物技术通讯, 2019, 30(6): 845-850.
[4] NASRIN R, SOMAYYEH A. Is there any association between green tea consumption and the risk of head and neck squamous cell carcinoma: Finding from a case-control study[J]. Archives of Oral Biology, 2019, 98(2): 280-284.
[5] 张姝萍, 王岳飞, 徐平. 茶多酚对动脉粥样硬化的预防作用与机理研究进展[J]. 茶叶科学, 2019, 39(3): 231-246.
[6] 韦芳媚, 陈春, 李超, 等. 桑叶提取物、茶多酚及其复配物的抗氧化和降血糖活性[J]. 食品工业科技, 2018, 39(21): 305-311.
[7] NOZOMI T, SHUTARO I, AKIYOSHI S, et al. Bidirectional ventricular tachycardia induced by caffeine poisoning[J]. American Journal of Emergency Medicine, 2019, 37(11): 2118.e1-2118.e3.
[8] 杨金川, 白雪梅. HPLC法同时测定茶叶中儿茶素类和咖啡因的含量[J]. 贵州农业科学, 2020, 48(2): 99-102.
[9] WU Fu-fang, LIU Rui-rui, SHEN Xiao-bao, et al. Study on the interaction and antioxidant activity of theophylline and theobromine with SOD by spectra and calculation[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2019, 215: 354-362.
[10] 赵熙, 郑红发, 包小村, 等. 六大茶类的工艺创新与机具配置[J]. 茶叶通讯, 2013, 40(4): 21-25.
[11] 蒋萍萍, 武琳琳, 王铁龙, 等. 黑茶的研究进展[J]. 农产品加工, 2020, 22(3): 73-78.
[12] 李张伟. 凤凰单丛茶老枞茶树和新枞茶树茶叶的香气和生化成分比较[J]. 食品与发酵工业, 2019, 45(5): 228-234.
[13] 曹永, 赵谋明, 赵甜甜, 等. 不同黑茶提取物功能性成分分析及活性评价[J]. 食品科学, 2017, 38(18): 54-59.
[14] 王斌, 邓慧芸, 吴茂, 等. 安化黑茶水溶性成分高效液相色谱指纹图谱及定量分析[J]. 食品科学, 2017, 38(20): 125-130.
[15] 刘婷婷, 齐桂年, 邹瑶, 等. 四川黑茶渥堆过程中主要品质成分及酶类活性变化[J]. 华南农业大学学报, 2015, 36(4): 112-116.
[16] 朱超锋, 黄诗林, 孙柳青, 等. 香蕉皮多酚物质提取工艺优化及其抗氧化性研究[J]. 广东化工, 2019, 46(11): 34-36.
[17] 宋莹, 刘思含, 尝霞, 等. 紫薯粉发酵工艺优化及抗氧化能力分析[J]. 食品与机械, 2020, 36(1): 216-229.
[18] 夏陈, 向卓亚, 朱永清, 等. 不同品种青稞中总多酚、总黄酮含量及抗氧化性比较[J]. 食品与机械, 2020, 36(6): 162-165.
[19] 邓俊琳, 朱永清, 夏陈, 等. 绞股蓝中6种多酚化合物的HPLC检测及其醇提液的抗氧化活性[J]. 食品科学, 2019, 40(14): 265-269.
[20] 支红峰, 杨璐, 胡中豪, 等. 超高效液相色谱同时测定绿茶中10种活性物质[J]. 食品工业, 2019, 40(2): 306-309.
[21] JIANG Hao, YU Feng, QIN Li, et al. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves[J]. Journal of Food Composition and Analysis, 2019, 77: 28-38.
[22] YE Yu-long, YAN Jiang-na, CUI Ji-lai, et al. Dynamic changes in amino acids, catechins, caffeine and gallic acid in green tea during withering[J]. Journal of Food Composition and Analysis, 2017, 66: 98-108.
[23] PARK J H, LEE J M, CHOY J, et al. Effect of far-infrared heater on the physicochemical characteristics of green tea during processing[J]. Journal of Food Biochemistry, 2010, 33(2): 149-162.
[24] ANANINGSIH V K, SHARMA A, ZHOU Wei-biao. Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Research International, 2013, 50(2): 469-479.
[25] NATTHAWUDDHI D, YUKIHARU O. The influence of processing conditions on catechin, caffeine and chlorophyll contents of green tea (Camelia sinensis) leaves and infusions[J]. LWT-Food Science and Technology, 2019, 116: 1-8.
[26] TANMOY S, VIJAYAKUMAR C, SHRILEKHA D, et al. Assessing biochemical changes during standardization of fermentation time and temperature for manufacturing quality black tea[J]. Journal of Food Science & Technology, 2015, 52(4): 2 387-2 393.
[27] XU Jie, HU Feng-lin, WAN Xiao-chun, et al. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics[J]. Food Chemistry, 2015, 186(11): 176-184.
[28] 林鹏飞, 贾小舟, 祁燕, 等. 酚酸类化合物研究进展[J]. 广东化工, 2017, 44(1): 50-52.
[29] 王引航, 李俊含, 孙晋德, 等. 匀浆负压空化法提取棕榈藤酚酸类化合物及其光热稳定性研究[J]. 植物学研究, 2018, 7(1): 37-44.
[30] 夏宇, 王梦茹, 杨奎, 等. 匀浆辅助负压空化提取楠竹叶总黄酮及其稳定性研究[J]. 植物学研究, 2018, 7(1): 21-28.
[31] 赵熙, 黄浩, 钟妮, 等. 响应面法优化黑毛茶渥堆工艺及其品质评价[J]. 植物学研究, 2020, 47(2): 275-281.