•  
  •  
 

Abstract

Objective: This paper studies the design ideas and concepts of the emotional interaction of the ordering robot, so as to design the human-based intelligent emotional interaction method of the ordering robot. Methods: Firstly, BLSTM network was used to construct the English semantic parameter coding network, then put forward thrust type attention model, this model can extract data by means of weighting, after that, the constrained SeqGAN network architecture is designed to complete the decoding, so as to adjust the parameters of the generating device and narrow the gap between the generated ordering language and human English emotional interaction response. Results: Compared with Du-Model method and HRED-Model method, the BLSTM-SeqGAN method has smaller confusion index and higher accuracy, and becomes more stable as the number of iterations increases. Conclusion: This method can obtain more natural, real and friendly emotional interaction response.

Publication Date

9-28-2021

First Page

110

Last Page

116

DOI

10.13652/j.issn.1003-5788.2021.09.018

References

[1] 柳振宇, 薛毓强, 谢祖强. 基于闭环和前馈控制的高速食品分拣机器人控制技术[J]. 食品与机械, 2021, 37(7): 87-93.
[2] 黄良沛, 刘洋, 舒勇. 视觉工业点卤机器人控制系统研究[J]. 食品与机械, 2021, 37(3): 89-95.
[3] 叶楠, 寇丽杰. 多语言机器人深度学习模型构建[J]. 信息与控制, 2020, 49(6): 680-687.
[4] RADULESCU S, WIJNEN F, AVRUTIN S. Patterns bit by bit. an entropy model for rule induction[J]. Language Learning and Development, 2020, 16(2): 109-140.
[5] CHAKRABORTY R, HASIJA Y. Predicting microRNA sequence using CNN and LSTM stacked in Seq2Seq architecture[J]. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(6): 2 183-2 188.
[6] PALADINES J, RAMIREZ J. A systematic literature review of intelligent tutoring systems with dialogue in natural language[J]. IEEE Access, 2020, 8: 164 246-164 267.
[7] 张凉, 杨燕, 陈成才, 等. 基于多视角对抗学习的开放域情感交互生成模型[J]. 计算机应用研究, 2021, 38(2): 372-376.
[8] 王孟宇, 俞鼎耀, 严睿, 等. 基于HRED模型的中文多轮情感交互任务方法研究[J]. 中文信息学报, 2020, 34(8): 78-85.
[9] 易炜, 何嘉, 邹茂扬. 基于循环神经网络的情感交互系统记忆机制[J]. 计算机工程与设计, 2019, 40(11): 3 259-3 264.
[10] 张永飞, 裴悦琨, 姜艳超, 等. 基于深度卷积神经网络的樱桃分级检测[J]. 食品研究与开发, 2021, 42(14): 138-144.
[11] 陈锂, 邹礼华, 孟可欣, 等. 长短期记忆神经网络在肉制品中铅含量风险预警的应用[J]. 现代食品科技, 2020, 36(8): 317-324, 72.
[12] 高立秀, 陈得丽, 万兴淼, 等. 基于机器学习的切丝后含水率预测及控制方法[J]. 食品与机械, 2021, 37(4): 189-194, 211.
[13] 王庆棒, 汪颢懿, 左敏, 等. 基于CNN-BLSTM的食品舆情实体关系抽取模型研究[J]. 食品科学技术学报, 2021, 39(2): 152-158.
[14] 朱磊, 刘云清, 赵龙源, 等. 外源脱落酸处理对葡萄果实及葡萄酒中抗氧化成分的影响[J]. 食品科学技术学报, 2021, 39(3): 140-150.
[15] 李振强, 王树才, 赵世达, 等. 基于机器视觉和机器学习的羊骨架自动分割方法[J]. 食品与机械, 2020, 36(6): 125-132.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.