Abstract
Objective: In order to realize the fast and accurate prediction of moisture content of fresh fruit corn. Methods: Hyperspectral technology was used to collect and extract the spectral data of fresh fruit and corn. The effects to the accuracy of model were studied by comparing the data from Standard Normalized Variate (SNV), Multiplicative Scatter Correction (MSC), Savitzky-Golay smooth (SG) and Moving Average (MA), etc. MSC was selected for preprocessing. Based on the data preprocessed by MSC, successive projections algorithm (SPA), Competitive Adaptive Reweighted Sampling(CARS)and random frog (RF) were selected to optimize the characteristic wavelength for the prediction of moisture content of fresh fruit corn. Results: It showed that the prediction effect of moisture content of MSC-CARS-PLS model was the best. The coefficient of determination (R2p) of prediction set was 0.825 0, the predicted error (RMSEP) was 0.006 0. Conclusion: It is showing that the rapid nondestructive testing of moisture content of fresh fruits and corn can be realized by using hyperspectral technology.
Publication Date
9-28-2021
First Page
127
Last Page
132
DOI
10.13652/j.issn.1003-5788.2021.09.021
Recommended Citation
Meng-ru, LIAN; Shu-juan, ZHANG; Rui, REN; Jiang-tao, CHI; Bing-yu, MU; and Shuang-shuang, SUN
(2021)
"Nondestructive detection of moisture content in fresh fruit corn based on hyperspectral technology,"
Food and Machinery: Vol. 37:
Iss.
9, Article 21.
DOI: 10.13652/j.issn.1003-5788.2021.09.021
Available at:
https://www.ifoodmm.cn/journal/vol37/iss9/21
References
[1] 安学君, 潘巨忠, 潘舒伟. 鲜食玉米保鲜方法研究进展[J]. 农产品加工, 2020(24): 76-78, 82.
[2] 任怡, 王成全, ERNEST Bonah, 等. 高光谱成像技术预测香葱贮藏品质研究[J]. 食品工业科技, 2021, 42(10): 267-274.
[3] 杨佳, 刘强, 赵楠, 等. 基于高光谱成像的干燥胡萝卜片水分及类胡萝卜素含量无损检测和可视化分析[J]. 食品科学, 2020, 41(12): 285-291.
[4] 朱洁. 基于高光谱的单粒软硬麦鉴别及水分预测方法[D]. 重庆: 西南大学, 2020: 43-55.
[5] 陈冲. 南疆红枣多角度高光谱偏振检测模型研究[D]. 阿拉尔: 塔里木大学, 2019: 15-27.
[6] 海兵帅. 基于集成学习的苹果品质高光谱检测方法研究[D]. 南京: 南京农业大学, 2017: 12-14.
[7] TIAN Xiao-yu, AHETO J H, BAI Jun-wen, et al. Quantitative analysis and visualization of moisture and anthocyanins content in purple sweet potato by Vis-NIR hyperspectral imaging[J]. Journal of Food Processing and Preservation, 2020, 45(2): e15128.
[8] LEE D, LOHUMI S, CHO B K, et al. Determination of drying patterns of radish slabs under different drying methods using hyperspectral imaging coupled with multivariate analysis[J]. Foods, 2020, 9(4): 484.
[9] MARAPHUM K, SAENGPRACHATANARUG K, APARATANA K, et al. Spatial mapping of Brix and moisture content in sugarcane stalk using hyperspectral imaging[J]. Journal of Near Infrared Spectroscopy, 2020, 28(4): 167-174.
[10] 高新浩, 刘斌. 基于机器视觉的鲜食玉米品质检测分类器设计与试验[J]. 农业工程学报, 2016, 32(1): 298-303.
[11] KANDPAL L M, LOHUMI S, KIM M S, et al. Near -infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds[J]. Sensors & Actuators B Chemical, 2016(1): 534-544.
[12] 沈凌雁, 牛丽影, 刘春菊, 等. 不同品种鲜食糯玉米清汁与籽粒中挥发性成分比较[J]. 核农学报, 2021, 35(4): 902-910.
[13] YU Ke-qiang, ZHAO Yan-ru, LIU Zi-yi, et al. Application of visible and nearinfrared Hyperspectral imaging for detection of defective features in Loquat[J]. Food and Bioprocess Technology, 2014, 7(11): 3 077-3 087.
[14] 孙世鹏, 彭俊, 李瑞, 等. 基于近红外高光谱图像的冬枣损伤早期检测[J]. 食品科学, 2017, 38(2): 301-305.
[15] 刘蒋龙, 张淑娟, 孙海霞, 等. 基于二维相关光谱的壶瓶枣室温贮藏硬度动力学模型研究[J]. 光谱学与光谱分析, 2018, 38(3): 813-817.
[16] 蒋锦琳. 基于高光谱成像技术的辣椒疫病和品质分析研究[D]. 杭州: 浙江大学, 2019: 55-56.
[17] 张金龙. 基于高光谱成像技术检测柿果货架期的研究[D]. 晋中: 山西农业大学, 2015: 20.
[18] YANG Qian, SUN Da-wen, CHENG Wei-wei. Development of simplified models for nondestructive hyperspectral imaging monitoring of TVB-N contents in cured meat during drying process[J]. Journal of Food Engineering, 2017, 192: 53-60.
[19] HE Hong-ju, SUN Da-wen. Toward enhancement in prediction of Pseudomonas counts distribution in salmon fillets using NIR hyperspectral imaging[J]. LWT-Food Science and Technology, 2015, 62(1): 11-18.