Abstract
Objective: To optimize the microwave-assisted extraction process of Rosa roxbunghii Tratt polysaccharide (RRTP) from the Rosa roxbunghii Tratt (RRT) dried fruit and evaluate the antitumor activities of RRTP extracted by the optimum processing conditions. Methods: Taking the yield of polysaccharides as the index, and based on the single factor test, the extraction process parameters were optimized by the response surface experiment to establish the model of S180 solid tumor to study the antitumor activities of RRTP. Results: The optimum extraction conditions for RRTP were as follows: microwave power 240 W, liquid to solid 37∶1 (mL/g), microwave time 24 min, 3 times of microwave extraction. The yield of RRTP was (3.19±0.05)% on average under the optimum processing conditions. Besides, antitumor activity analysis showed that RRTP had obvious antitumor activity and could significantly increase leukocyte count, thymus index and spleen index in S180 solid tumor mice. It was indicated that RRTP had a tumor inhibitory rate of (52.13±1.84)% in S180 solid tumor mice, which was stronger than ultrasound-assisted extraction of RRTP at the same gastric irrigation dose at 100 mg/kg. Conclusion: The RRTP extracted by optimum microwave-assisted processing conditions can improve the immune ability and antitumor activity of S180 solid tumor mice and could be used as a potential functional food supplements.
Publication Date
9-28-2021
First Page
160
Last Page
167
DOI
10.13652/j.issn.1003-5788.2021.09.026
Recommended Citation
Jian-bo, TANG; Du, LU; Mu, PAN; Mei, PENG; and Juan, YANG
(2021)
"Optimization on microwave-assisted extraction of Rosa Roxburghii Tratt polysaccharide and its antitumor activity,"
Food and Machinery: Vol. 37:
Iss.
9, Article 26.
DOI: 10.13652/j.issn.1003-5788.2021.09.026
Available at:
https://www.ifoodmm.cn/journal/vol37/iss9/26
References
[1] HASHEMIFESHARAKI R, XANTHAKIS E, ALTINTAS Z, et al. Microwave-assisted extraction of polysaccharides from the marshmallow roots: optimization, purication, structure, and bioactivity[J]. Carbohydrate Polymers, 2020, 240: 116301.
[2] 张琪琳, 舒亚民, 潘祥林, 等. 药食同源植物多糖治疗溃疡性结肠炎的药理作用及机制研究进展[J]. 药物评价研究, 2021, 44(3): 644-651.
[3] 薛山, 肖夏, 陈舒怡, 等. 基于降维分析优化南瓜籽多糖拉面面团制作工艺[J]. 保鲜与加工, 2021, 21(2): 38-46.
[4] 郝静, 杨晨芝, 丁霄, 等. 杏鲍菇多糖对乳酸菌发酵及酸奶品质的影响[J]. 食品工业, 2020, 41(11): 177-180.
[5] LADJEVARDI Z S, GHARIBZAHEDI S M T, MOUSAVI M. Development of a stable low-fat yogurt gel using functionality of psyllium (Plantago ovata Forsk) husk gum[J]. Carbohydrate Polymers, 2015, 125: 272-280.
[6] 张存艳, 魏蔼玲, 岳茂林, 等. 不同干燥方式对松露多糖含量及其抗氧化活性的影响[J]. 食品工业, 2020, 41(12): 214-218.
[7] 梁英, 毕红梅, 郑文凤, 等. 平菇多糖硫酸酯制备工艺优化及抗氧化活性研究[J]. 食品与机械, 2021, 37(1): 175-179.
[8] 罗志锋, 陆思名, 黎攀, 等. 遗传算法优化超高压辅助复合酶提取枸杞多糖工艺及其抗炎活性研究[J]. 粮食与油脂, 2021, 34(1): 114-122.
[9] CHEN Yang, LIU Zhong-jing, LIU Jia, et al. Inhibition of metastasis and invasion of ovarian cancer cells by crude polysaccharides from rosa roxburghii tratt in vitro[J]. Asian Pacific Journal of Cancer Prevention, 2014, 15(23): 10 351-10 354.
[10] 范美玲. 吴茱萸多糖含量测定及抗胃溃疡作用研究[J]. 实用中医药杂志, 2020, 36(8): 970-971.
[11] 杨佳, 付业佩, 杜宝香, 等. 细辛多糖对流感病毒H1N1型感染的保护作用及对炎症因子表达水平的影响[J]. 中国中药杂志, 2021, 46(2): 412-419.
[12] 魏科, 陈勇超, 周家豪, 等. 茯苓多糖辅助抗肺癌及免疫调节作用研究[J]. 中华中医药杂志, 2020, 35(10): 4 937-4 940.
[13] XU Jing-wen, VIDYARTHI S K, BAI Wei-bai, et al. Nutritional constituents, health benets and processing of rosa roxburghii: A review[J]. Journal of Functional Foods, 2019, 60: 103456.
[14] CHEN Guang-jing, KAN Jian-quan. Characterization of a novel polysaccharide isolated from rosa roxburghii tratt fruit and assessment of its antioxidant in vitro and in vivo[J]. International Journal of Biological Macromolecules, 2018, 107: 166-174.
[15] 周宏炫, 黄颖, 谭书明, 等. 刺梨多酚对急性酒精中毒大鼠的解酒护肝作用[J/OL]. 食品科学. [2021-07-18]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201211.1736.058.html.
[16] 夏仕青, 张爱华. 刺梨的营养保健功能及其开发利用研究进展[J]. 贵州医科大学学报, 2018, 43(10): 1 129-1 132, 1 153.
[17] 杨宗玲, 李晗, 范方宇, 等. 超声辅助酶法提取无籽刺梨果渣中黄酮的工艺优化及其抗氧化活性[J]. 食品工业科技, 2020, 2021, 42(13): 184-192.
[18] 李跃红, 冉茂乾, 徐孟怀, 等. 不同产地刺梨果实品质分析与模糊综合评判[J]. 安徽农业科学, 2020, 48(17): 202-205.
[19] GOLBARGI F, GHARIBZAHEDI S M T, ZOGHI A, et al. Microwave-assisted extraction of arabinan-rich pectic polysaccharides from melon peels: Optimization, purification, bioactivity, and techno-functionality[J]. Carbohydrate Polymers, 2021, 256: 117522.
[20] HU Wei-chao, ZHAO Yu-qing, YANG Yong, et al. Microwave-assisted extraction, physicochemical characterization and bioactivity of polysaccharides from camptotheca acuminata fruits[J]. International Journal of Biological Macromolecules, 2019, 133: 127-136.
[21] 唐健波, 肖雄, 杨娟, 等. 响应面优化超声辅助提取刺梨多糖工艺研究[J]. 天然产物研究与开发, 2015, 27(2): 314-320.
[22] ZONG Shuai, LI Jing-lei, YE Zi-yang, et al. Lachnum polysaccharide suppresses S180 sarcoma by boosting anti-tumor immune responses and skewing tumor-associated macrophages toward M1 phenotype[J]. International Journal of Biological Macromolecules, 2020, 144: 1 022-1 033.
[23] CAI Bing-na, PAN Jian-yu, CHEN Hua, et al. Oyster polysaccharides ameliorate intestinal mucositis and improve metabolism in 5-fluorouracil- treated S180 tumour-bearing mice[J]. Carbohydrate Polymers, 2021, 256: 117545.
[24] 贾福怀, 涂宏建, 王俊, 等. 超声-闪式协同提取白及须根多糖工艺优化及其抗肿瘤活性[J]. 食品工业科技, 2019, 40(20): 188-195, 208.
[25] 姚佳, 彭梅, 肖雄, 等. 仙茅多糖对小鼠S180实体瘤的顺铂增敏作用及其机制[J]. 华西药学杂志, 2014, 29(2): 132-134.
[26] 张华, 郑建东, 马田林, 等. 响应面法优化微波提取夏枯草多糖及其抗氧化活性[J]. 化学研究与应用, 2020, 32(2): 264-272.
[27] 陈红, 张艳荣, 王大为, 等. 微波协同酶法提取玉米须多糖工艺的优化研究[J]. 食品科学, 2010, 31(10): 42-46.
[28] 张彦慧, 李彦霏, 胡仲秋. 木瓜滤渣微波辅助提取木瓜多糖的响应面法工艺优化及其抗氧化活性研究[J]. 农产品加工, 2018(21): 30-35.
[29] 谭莉, 陈瑞战, 金辰光, 等. 橘皮多糖微波提取工艺优化及分离纯化研究[J]. 食品科技, 2017, 42(3): 214-218, 222.
[30] 杨嘉丹, 刘婷婷, 张闪闪, 等. 微波辅助提取银耳多糖工艺优化及其流变、凝胶特性[J]. 食品科学, 2019, 40(14): 289-295.
[31] GUO Yang, SHANG Hong-mei, ZHAO Jiang-chao, et al. Enzyme-assisted extraction of a cup plant (Silphium perfoliatum L.) polysaccharide and its antioxidant and hypoglycemic activities[J]. Process Biochemistry, 2020, 92: 17-28.