Abstract
Objective: The present study aimed to optimize the extraction process of polyphenols from Trifolium pratense Linn and evaluate the antioxidant activity in vitro. Methods: Ultrasonic-assisted extraction of total polyphenols from stems, leaves, and flowers was firstly performed, and the parts with higher polyphenol content were selected for further investigation. Then the response surface methodology was used to optimize the extraction process, and its antioxidant activity was evaluated by scavenging rate of hydroxyl radical and superoxide anion radical. Results: The results showed that the content of polyphenols in the leaves is relatively high. The optimal extraction process is as follows: the ratio of solid to liquid is 1∶79 (g/mL), the extraction time is 23 min, the volume fraction of ethanol is 38%, the ultrasonic power is 800 W, and the ultrasonic temperature is 50 ℃; the yield of polyphenols is 2.31%, which is close to the predicted return of 2.26%, and the relative standard deviation is 2.16% (n=5). The IC50 to hydroxyl radical and superoxide anion radical was 0.419 mg/mL and 0.428 mg/mL, respectively. Conclusion: The results indicate that this extraction method is reliable and effective in extracting phenolic compounds from the leaves of Trifolium pretense Linn, and the extracts have good antioxidant activity.
Publication Date
9-28-2021
First Page
173
Last Page
178
DOI
10.13652/j.issn.1003-5788.2021.09.028
Recommended Citation
Xin-ran, LI; Xu-ying, WANG; Zi-yi, XU; Yong-qi, PAN; and Gui-ying, WENG
(2021)
"Optimization of extraction process of polyphenols from different parts of Trifolium pretense Linn and its antioxidant activity,"
Food and Machinery: Vol. 37:
Iss.
9, Article 28.
DOI: 10.13652/j.issn.1003-5788.2021.09.028
Available at:
https://www.ifoodmm.cn/journal/vol37/iss9/28
References
[1] 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1998: 329-339.
[2] 南京中医药大学. 中药大辞典[M]. 上海: 上海科学技术出版社, 2006: 1 410-1 411.
[3] RAHELE K, HODA A, ROSHANAK S, et al. A review of effective herbal medicines in controlling menopausalsymptoms[J]. Electron Physician, 2017, 9(11): 5 826-5 833.
[4] 于海涛, 白少岩, 杨尚军. 红车轴草化学成分研究[J]. 食品与药品, 2016, 18(2): 87-91.
[5] BRONISLAVA B, AUDRIUS P, JURGITA C, et al. Perennial legumes as a source of ingredients for healthy food: Proximate, mineral and phytoestrogen composition and antibacterial activity[J]. Journal of Food Science and Technology-mysore, 2017, 54(9): 2 661-2 669.
[6] MOHSEN A, MOHAMMAD R K, MOZAFAR K. Phytochemicals and antioxidant activity of alcoholic/hydroalcoholic extract of Trifolium pratense[J]. Chinese Herbal Medicines, 2020, 12(3): 326-335.
[7] SAIOA G, MAITANE G A, ALFREDO F Q, et al. Scientific evidence supporting the beneficial effects of isoflavones on human health[J]. Nutrients, 2020, 12(12): 3 853.
[8] TOMMASO S, SILVIA G, FUX D, et al. Effects of phytoestrogens derived from red clover on atherogenic adhesion molecules in human endothelial cells[J]. Menopause, 2008, 15(3): 542-550.
[9] 刘宝剑, 郭慧敏, 魏东, 等. 红车轴草总黄酮抗氧化及增强机体免疫力的研究[Z]. 河北省, 河北北方学院, 2010-07-25.
[10] AURELIE R J, MITALI A T, SIN Y M, et al. Pikuni-blackfeettraditional medicine: Neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms[J]. Journal of Ethnopharmacology, 2017, 206: 393-407.
[11] VALENTINA E, FLORENCIA E, GEORGE E B, et al. Estrogenic plants: to prevent neurodegeneration and memory loss and other symptoms in women after menopause[J]. Frontiers in Pharmacology, 2021, 12: 644103.
[12] SANG G L, CINDI R B, SUNO L, et al. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (Red Clover) in lipopolysaccharide-Stimulated RAW-267.4 Macrophages[J]. Nutrients, 2020, 12(4): 1 089.
[13] GEETA P, LI L, NORBERT G, et al. Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats[J]. Phytomedicine, 2009, 16(9): 845-855.
[14] 王凯, 王洋, 孙娟娟, 等. 苜蓿和红车轴草黄酮提取物对绵羊生长性能和血液相关指标的影响[J]. 中国兽医学报, 2017, 37(4): 704-709.
[15] 姜义宝, 王成章, 崔国文. 红车轴草异黄酮对肉鸡免疫器官、免疫球蛋白及抗氧化性能的影响[J]. 草地学报, 2011, 19(3): 520-524.
[16] 陈洪博, 张雪, 刘龙思, 等. 红车轴草异黄酮免疫佐剂作用的研究[C]// 中国畜牧兽医学会兽医病理学分会会议论文集. 海口: 中国畜牧兽医学会兽医病理学分会, 2016: 1.
[17] GADEYNE F, RUYCK D K, RANST V G, et al. Effect of changes in lipid classes during wilting and ensiling of red clover using two silage additives on in vitro ruminal biohydrogenation[J]. The Journal of Agricultural Science, 2016(3): 1-14.
[18] GADEYNE F, RANST V G, VLAEMINCK B, et al. Protection of polyunsaturated oils against ruminal biohydrogenation and oxidation during storage using a polyphenol oxidase containing extract from red clover[J]. Food Chemistry, 2015, 171: 241-250.
[19] 赵卫星, 姜红波, 温普红, 等. 红车轴草的化学成分及药理作用[J]. 化学与生物工程, 2010, 27(10): 6-9.
[20] 田富林, 黄文晶, 王展, 等. 植物多酚提取研究进展[J]. 食品与机械, 2020, 36(9): 211-216.
[21] CHIARA D L, FRANCESCA C, SIMONE B, et al. Polyphenols and human health: The role of bioavailability[J]. Nutrients, 2021, 13(1): 273.
[22] ELENA R C, CARMEN L C, SANDRU C, et al. Comparative study of the bioactive properties and elemental composition of red clover (Trifolium pratense) and alfalfa (Medicago sativa) sprouts during germination[J]. Applied Sciences, 2020, 10(20): 7 249.
[23] ELENA R C, CARMEN L C, DANIELA B, et al. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages using the UHPLC-Q exactivehybrid quadrupole orbitrap high-resolution mass spectrometry[J]. Molecules, 2020, 25(10): 2 321.
[24] 谢佳函, 刘回民, 刘美宏, 等. 红豆皮多酚提取工艺优化及抗氧化活性分析[J]. 中国食品学报, 2020, 20(1): 147-157.
[25] 高林晓, 郭蒙, 郭茂鸿, 等. 正交试验设计优化刺三加根中总多酚的提取工艺研究[J]. 食品研究与开发, 2019, 40(13): 57-62.
[26] 刘宝剑. 红车轴草总黄酮抗氧化作用及其对免疫功能的影响[D]. 兰州: 甘肃农业大学, 2008: 19-23.
[27] 王晓燕. 红车轴草异黄酮提取、分离纯化及其抗氧化活性的研究[D]. 西安: 西北大学, 2013: 42-44.
[28] 郑鹏, 俞君如, 白成科. 红车轴草种子脂溶性成分GC-MS分析及抗氧化活性研究[J]. 西安文理学院学报(自然科学版), 2008(2): 24-28.