Abstract
Objective: Headspace solid-phasemicroextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used to separate and identify the volatile components of Pacific saury. Methods: The odor threshold was used to calculate the relative odor activity value (ROAV) to determine the critical aroma component of the samples under different processing stages. Principal components analysis and variable importance for the projection (VIP) values were used to determine characteristic flavor compounds at different stages. Results: The results showed that 63 volatile components were detected in Pacific saury samples, and aldehydes were the main flavor substances. (E, Z)-2,6-nonadienal, Octanal, Methional, (Z)-4-heptenal, (E, E)-2,6 nonadienal and 1-octene-3 alcohol were considered the essential flavors compounds. Conclusion: The aroma of Pacific saury before salting was characterized with mushroom aroma, while those after salting were fishy and fruity. The flavor components of saury processed by frying were the most abundant, and the aroma was characterized by fat and meaty.
Publication Date
9-28-2021
First Page
29
Last Page
36
DOI
10.13652/j.issn.1003-5788.2021.09.005
Recommended Citation
Li-xiang, WU; Wen, ZHANG; Qiu-xia, TONG; and Li, NI
(2021)
"Study on the variation of volatile components of ready-to-eat Pacific saury (Cololabis saira) during processing,"
Food and Machinery: Vol. 37:
Iss.
9, Article 5.
DOI: 10.13652/j.issn.1003-5788.2021.09.005
Available at:
https://www.ifoodmm.cn/journal/vol37/iss9/5
References
[1] 于慧, 佐藤实, 王锡昌. 秋刀鱼盐干过程中理化特性的变化[J]. 食品与发酵工业, 2016, 42(10): 75-80.
[2] MORI H, TONE Y, SHIMIZU K, et al. Studies on fish scale collagen of Pacific saury (Cololabis saira)[J]. Materials Science & Engineering C Materials for Biological Applications, 2013, 33(1): 174-181.
[3] GORDEEV I I, GRIGOROV I V, AFANASYEV P. Infection of the pacific saury Cololabis saira by acanthocephalans in the Kuril Islands area[J]. Parazitologiia, 2017, 51(1): 51-56.
[4] 杨震, 贡慧, 刘梦, 等. 基于电子鼻技术的秋刀鱼新鲜度评价[J]. 肉类研究, 2017, 31(3): 40-44.
[5] TIAN Y, AKAMINE T, SUDA M. Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes[J]. Fisheries Research, 2003, 60(2/3): 439-454.
[6] 冯倩倩, 胡飞, 李平凡. SPME-GC-MS分析罗非鱼体中挥发性风味成分[J]. 食品工业科技, 2012, 33(6): 67-70.
[7] 王秋丽, 钟秋平. 酒糟罗非鱼即食休闲风味食品的研制[J]. 食品工业, 2015, 36(7): 120-122.
[8] GANGULY S, MAHANTY A, MITRA T, et al. Volatile compounds in hilsa (Tenualosa ilisha, Hamilton) as detected by static headspace gas chromatography and mass spectrometry[J]. Journal of Food Processing and Preservation, 2017, 41(6): e13212.
[9] KAZUO M, MARIKO U, MASASHI H. Effective prevention of oxidative deterioration of fish oil: Focus on flavor deterioration[J]. Annual Review of Food Science and Technology, 2018, 9(1): 209-226.
[10] ATANASSOVA M R, CHAPELA M J, GARRIDO-MAESTU A, et al. Microbiological quality of ready-to-eat pickled fish products[J]. Journal of Aquatic Food Product Technology, 2014, 23(5): 498-510.
[11] 邓梁虹, 张方, 王晗, 等. 我国即食食品的开发现状与市场前景展望[J]. 保鲜与加工, 2017, 17(6): 112-121.
[12] 贺雪华. 腌制和烘烤工艺对半干秋刀鱼品质的影响[D]. 重庆: 西南大学, 2018: 3-7.
[13] 卞瑞姣, 曹荣, 赵玲, 等. 电子鼻在秋刀鱼鲜度评定中的应用[J]. 现代食品科技, 2017, 33(1): 243-247.
[14] 贡慧, 杨震, 刘梦, 等. 秋刀鱼热加工后挥发性风味成分变化的分析[J]. 肉类研究, 2017, 31(1): 25-31.
[15] 陈康明, 刘晓丽, 许艳顺, 等. 油炸温度与时间对白公干鱼传质特性及品质的影响[J]. 食品与机械, 2020, 36(2): 25-31.
[16] 赵勇, 蒋东丰, 朱克卫, 等. 不同产地进口三文鱼挥发风味物质组成特征研究[J]. 食品安全质量检测学报, 2020, 11(3): 734-744.
[17] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法:“ROAV”法[J]. 食品科学, 2008, 29(7): 370-374.
[18] 刘奇, 郝淑贤, 李来好, 等. 鲟鱼不同部位挥发性成分分析[J]. 食品科学, 2012, 33(16): 142-145.
[19] FRATINI G, LOIS S, PAZOS M, et al. Volatile profile of Atlantic shellfish species by HS-SPME GC/MS[J]. Food Research International, 2012, 48(2): 856-865.
[20] 吴燕燕, 王悦齐, 李来好, 等. 基于电子鼻与HS-SPME-GC-MS技术分析不同处理方式腌干带鱼挥发性风味成分[J]. 水产学报, 2016, 40(12): 1 931-1 940.
[21] 李来好, 丁丽丽, 吴燕燕, 等. 咸鱼中的挥发性风味成分[J]. 水产学报, 2012, 36(6): 979-988.
[22] 贾金玉, 张慧芳, 孟宪华, 等. 宝蓄黑猪肉品质评价及关键风味物质分析[J]. 黑龙江畜牧兽医, 2020(22): 50-54.
[23] TOMAC A, COVA M C, NARVAIZ P, et al. Texture, color, lipid oxidation and sensory acceptability of gamma-irradiated marinated anchovy fillets[J]. Radiation Physics and Chemistry, 2015, 106: 337-342.
[24] 方炎鹏, 曾令彬, 熊善柏. 腊鱼加工过程中挥发性成分变化的研究[J]. 食品工业, 2011, 32(7): 33-36.
[25] MA Rui, MENG Yu-qiong, ZHANG Wen-bing, et al. Comparative study on the organoleptic quality of wild and farmed large yellow croaker Larimichthys crocea[J]. Journal of Oceanology and Limnology, 2020, 38(1): 260-274.
[26] HE Chao-jun, LI Zi-yong, LIU Hong-xia, et al. Characterization of the key aroma compounds in Semnostachya menglaensis Tsui by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Food Research International, 2020, 131(5): 108948.
[27] MA Rui, LIU Xiao-hong, TIAN Hai-ning, et al. Odor-active volatile compounds profile of triploid rainbow trout with different marketable sizes[J]. Aquaculture Reports, 2020, 17(7): 100312.
[28] WANG Zhuo-lin, XIAO Qing, ZHUANG Jin-da, et al. Characterization of aroma-active compounds in four yeast extracts using instrumental and sensory techniques[J]. Journal of Agricultural and Food Chemistry, 2020, 68(1): 267-278.
[29] DEL BIANCO S, NATALELLO A, LUCIANO G, et al. Influence of dietary inclusion of tannin extracts from mimosa, chestnut and tara on volatile compounds and flavour in lamb meat[J]. Meat Science, 2020, 172(2): 108336.
[30] YANG Ping, LIU Chen, SONG Huan-lu, et al. Sensory-directed flavor analysis of off-flavor compounds in infant formula with deeply hydrolyzed milk protein and their possible sources[J]. LWT, 2020, 119(2): 108861.
[31] 杨茗媛, 王小凤, 乙丛敏, 等. 养殖大黄鱼挥发性成分分析[J]. 食品工业科技, 2018, 39(4): 202-209.
[32] WANG Juan, YUAN Chang-jiang, GAO Xiu-lin, et al. Characterization of key aroma compounds in Huangjiu from northern China by sensory-directed flavor analysis[J]. Food Research International (Ottawa, Ont), 2020, 134(8): 109238.
[33] ZHANG Cai-meng, HUA Yu-fei, LI Xing-fei, et al. Key volatile off-flavor compounds in peas (Pisum sativum L.) and their relations with the endogenous precursors and enzymes using soybean (Glycine max) as a reference[J]. Food Chemistry, 2020, 333(12): 127469.
[34] XIAO Zuo-bing, WU Qu-yang, NIU Yun-wei, et al. Characterization of the key aroma compounds in five varieties of mandarins by gas chromatography-olfactometry, odor activity values, aroma recombination, and omission analysis[J]. Journal of Agricultural and Food Chemistry, 2017, 65(38): 8 392-8 401.
[35] YANG Meng-lu, HUANG Jun, ZHOU Rong-qing, et al. Characterization of the flavor in traditional Pixian Doubanjiang by polyphasic quantitative detection technology[J]. Food Research International, 2020, 138(12): 109753.
[36] 方冠宇, 蒋予箭, 穆晓静, 等. 浙江玫瑰醋不同发酵阶段特征性香气成分的确定[J]. 食品科学, 2020, 41(8): 234-242.