Intelligent control method of end effector of food sorting robot based on improved inversion control
Abstract
Objective: Solve the problems of poor positioning accuracy and low efficiency of end effectors in the sorting process of parallel food sorting robots. Methods: An intelligent control of the end-effector of a parallel food sorting robot combining fuzzy system, fuzzy neural network and inverse control algorithm was proposed. The modeling information was approximated by the fuzzy system, the unmodeled information was approximated and predicted by the fuzzy neural network, and the inversion control completed the control output. Finally, the experimental verification is carried out. Results: Compared with the traditional control method, the proposed control method had good tracking accuracy and control efficiency of the end effector, the error of the end effector was less than 0.3 mm, and the sorting efficiency reached1.99s-1.Conclusion: This control method can achieve accurate, efficient and stable position tracking.
Publication Date
12-28-2022
First Page
73
Last Page
78
DOI
10.13652/j.spjx.1003.5788.2022.60073
Recommended Citation
Shu-cheng, WEI and Guo-zhi, MO
(2022)
"Intelligent control method of end effector of food sorting robot based on improved inversion control,"
Food and Machinery: Vol. 38:
Iss.
12, Article 13.
DOI: 10.13652/j.spjx.1003.5788.2022.60073
Available at:
https://www.ifoodmm.cn/journal/vol38/iss12/13
References
[1] 赵利平,吴德刚.基于小波与模糊相融合的苹果分级算法[J].食品与机械,2020,36(4):142-145.ZHAO L P,WU D G.Apple grading algorithm based on Wavelet and fuzzy fusion[J].Food & Machinery,2020,36(4):142-145.
[2] 伍经纹,徐世许,王鹏,等.基于Adams的三自由度Delta机械手的运动学仿真分析[J].软件,2017,38(6):108-112.WU J W,XU S X,WANG P,et al.Kinematics simulation analysis of 3-DOF delta manipulator based on ADAMS[J].Software,2017,38(6):108-112.
[3] 朱向楠,韦源源.基于位置姿势控制的并联机械手运动误差仿真分析[J].组合机床与自动化加工技术,2021,12(3):49-56.ZHU X N,WEI Y Y.Simulation analysis of motion error of parallel manipulator based on position and posture control[J].Modular Machine Tool and Automatic Machining Technology,2021,12(3):49-56.
[4] 张皓宇,刘晓伟,任川,等.并联机器人正运动学与NURBS轨迹规划[J].机械设计与制造,2021,12(4):282-292.ZHANG H Y,LIU X W,REN C,et al.Forward kinematics and NURBS trajectory planning of parallel robot[J].Mechanical Design and Manufacturing,2021,12(4):282-292.
[5] 柳振宇,薛毓强,谢祖强.基于闭环和前馈控制的高速食品分拣机器人控制技术[J].食品与机械,2021,37(7):87-93.LIU Z Y,XUE Y Q,XIE Z Q.Control technology of high-speed food sorting robot based on closed-loop and feedforward control[J].Food & Machinery,2021,37(7):87-93.
[6] 郝琳,张坤平.基于并联机器人的食品分拣控制系统设计[J].食品工业,2021,41(4):209-212.HAO L,ZHANG K P.Design of food sorting control system based on parallel robots[J].Food Industry,2021,41(4):209-212.
[7] 王敏,蒋金伟,曹彦陶.基于改进粒子群的食品分拣机器人动态目标抓取控制方法[J].食品与机械,2022,38(3):86-91.WANG M,JIANG J W,CAO Y T.Dynamic object grasping control method for food sorting robot based on improved particle swarm[J].Food & Machinery,2022,38(3):86-91.
[8] 毕宪东,王振,李朝龙.基于Delta机器人的食品生产线动态目标抓取方法[J].食品与机械,2022,38(6):117-122.BI X D,WANG Z,LI C L.Dynamic target grabbing method of food production line based on Delta robot[J].Food & Machinery,2022,38(6):117-122.
[9] 杨双艳,杨紫刚,张四伟,等.基于近红外光谱和PSO-SVM算法的烟叶自动分级方法[J].贵州农业科学,2018,46(12):141-144.YANG S Y,YANG Z G,ZHANG Z W,et al.Automatic tobacco grading method based on near infrared spectroscopy and PSO-SVM algorithm[J].Guizhou Agricultural Sciences,2018,46(12):141-144.
[10] 刘善增.三自由度空间柔性并联机器人动力学研究[D].北京:北京工业大学,2009:25-28.LIU S Z.Dynamics of three-degree-of-freedom space flexible parallel robot[D].Beijing:Beijing University of Technology,2009:25-28.
[11] 王晓峰,李醒,王建辉.基于无模型自适应的外骨骼式上肢康复机器人主动交互训练控制方法[J].自动化学报,2016,42(12):1 899-1 914.WANG X F,LI X,WANG J H.Active interactive training control method for exoskeleton upper limb rehabilitation robot based on model-free adaptation[J].Journal of Automation,2016,42(12):1 899-1 914.
[12] 胡盛斌.非线性多关节机器人系统滑模控制[M].北京:国防工业出版社,2015:20-22.HU S B.Sliding mode control of nonlinear multi-joint robot system[M].Beijing:National Defense Industry Press,2015:20-22.
[13] 李雅倩.并联机器人夹持机构串类水果夹取控制研究[D].镇江:江苏大学,2020:27-29.LI Y Q.Research on the control of parallel robot clamping mechanism for serial fruit clamping[D].Zhenjiang:Jiangsu University,2020:27-29.
[14] 王阳阳,黄勋,陈浩,等.基于同态滤波和改进K-means的苹果分级算法研究[J].食品与机械,2019,35(12):47-51,112.WANG Y Y,HUANG X,CHEN H,et al.Apple grading algorithm based on homomorphic filtering and improved K-means[J].Food & Machinery,2019,35(12):47-51,112.
[15] 王立扬,张瑜,沈群,等.基于改进型LeNet-5的苹果自动分级方法[J].中国农机化学报,2020,41(7):105-110.WANG L Y,ZHAN Y,SHEN Q,et al.Automatic apple classification method based on improved LeNet-5[J].Chinese Journal of Agricultural Mechanochemistry,2020,41(7):105-110.
[16] 于蒙,李雄,杨海潮,等.基于图像识别的苹果的等级分级研究[J].自动化与仪表,2019,34(7):39-43.YU M,LI X,YANG H C,et al.Apple grading based on image recognition[J].Automation and Instrumentation,2019,34(7):39-43.
[17] 张树生,马静雅,岑强,等.煤矿综采工作面巡检机器人系统研究[J].煤炭科学技术,2019,47(10):136-140.ZHANG S S,MA J Y,CEN Q,et al.Research on inspection robot system of fully mechanized coal mining face[J].Coal Science and Technology,2019,47(10):136-140.
[18] 王志中.基于改进蚁群算法的移动机器人路径规划研究[J].机械设计与制造,2018,12(1):242-244.WANG Z Z.Research on mobile robot path planning based on improved ant colony algorithm[J].Mechanical Design and Manufacturing,2018,12(1):242-244.
[19] GAUTAM J V,PRAJAPATI H B,DABHI V K,et al.Empirical study of job scheduling algorithms in hadoop map reduce[J].Cybernetics and Information Technologies,2017,21(1):146-163.
[20] CAETANO C E F,LIMA A B,PAULINO J O S,et al.A conductor arrangement that overcomes the effective length issue in transmission line grounding[J].Electric Power Systems Research,2018,46(5):159-162.
[21] JIA Z W,WANG L J,ZHANG J C,et al.High efficiency,low power-consumption DFB quantum cascade lasers without lateral regrowth[J].Nanoscale Research Letters,2017,12(1):88-95.
[22] CASTAEDA L A,LUVIANO-JUREZ A,CHAIREZ I.Robust trajectory tracking of a delta robot through adaptive active disturbance rejection control[J].IEEE Transactions on Control Systems Technology,2015,23(4):1 387-1 398.
[23] LU X,ZHAO Y,LIU M.Self-learning interval type-2 fuzzy neural network controllers for trajectory control of a Delta parallel robot[J].Neurocomputing,2018,283:107-119.