•  
  •  
 

Corresponding Author(s)

成纪予(1979—),女,浙江农林大学副教授,博士。E-mail:jy_ch@163.com

Abstract

This paper summarized the latest research progress and achievements of electronic nose technology in fruits and vegetables postharvest diseases, including single pathogen infection and multiple pathogens infection. The shortcomings of current E-nose were analyzed, and the development direction of E-nose in fruit and vegetable disease was predicted.

Publication Date

4-25-2023

First Page

228

Last Page

233

DOI

10.13652/j.spjx.1003.5788.2022.80358

References

[1] 石莹, 刘园, 陈嘉景, 等. 黄龙病病菌侵染对茶枝柑果实类黄酮和挥发性物质的影响[J]. 华中农业大学学报, 2020, 39(1): 24-33.
[2] TIWARI S, GOSWAMI U, KATE A, et al. Biological relevance of VOCs emanating from red onions infected with Erwinia (Pectobacterium) carotovora under different storage conditions[J]. Postharvest Biology and Technology, 2022, 184: 111761.
[3] SANGJAN W, MARZOUGUI A, MATTINSON D S, et al. Identification of volatile biomarkers for high-throughput sensing of soft rot and Pythium leak diseases in stored potatoes[J]. Food Chemistry, 2022, 370: 130910.
[4] WANG A, LUCA A, EDELENBOS M. Emission of volatile organic compounds from yellow onion (Allium cepa L.) bulbs during storage[J]. Journal of Food Science and Technology, 2019, 56(6): 2 940-2 948.
[5] 汪素芳, 董淮晋, 孟甜, 等. 气相色谱法同时检测南极磷虾中2种ω-3脂肪酸含量[J]. 食品安全质量检测学报, 2021, 12(23): 9 006-9 012.
[6] PICO Y, ALFARHAN A H, BARCELO D. How recent innovations in gas chromatography-mass spectrometry have improved pesticide residue determination: An alternative technique to be in your radar[J]. TrAC Trends in Analytical Chemistry, 2020, 122: 115720.
[7] YIN J, WU M, LIN R, et al. Application and development trends of gas chromatography-ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis[J]. Microchemical Journal, 2021, 168: 106527.
[8] 陈臣, 刘政, 黄轲, 等. 基于GC-MS、GC-O及电子鼻评价不同加工方式对乳扇风味的影响[J]. 食品科学, 2021, 42(16): 108-117.
[9] 郭艳, 崔方让. 气相色谱法在农产品农药残留检测中的应用[J]. 现代农业科技, 2021(3): 229-230.
[10] BARBOSA-PEREIRA L, ROJO-POVEDA O, FERROCINO I, et al. Assessment of volatile fingerprint by HS-SPME/GC-qMS and E-nose for the classification of cocoa bean shells using chemometrics[J]. Food Research International, 2019, 123: 684-696.
[11] MOHD ALI M, HASHIM N, ABD AZIZ S, et al. Principles and recent advances in electronic nose for quality inspection of agricultural and food products[J]. Trends in Food Science & Technology, 2020, 99: 1-10.
[12] 李国琴, 黄艳茹, 张强, 等. 基于电子鼻技术对不同类型洋葱提取液的识别[J]. 食品安全质量检测学报, 2021, 12(20): 8 034-8 440.
[13] 谢林君, 成果, 王海军, 等. 基于电子鼻及气相—离子迁移谱法分析阳光玫瑰葡萄贮藏期挥发性成分[J]. 食品研究与开发, 2022, 43(7): 167-174.
[14] 王俊平, 徐刚. 机器视觉和电子鼻融合的番茄成熟度检测方法[J]. 食品与机械, 2022, 38(2): 148-152.
[15] 毋思敏, 于淼, 孙二娜, 等. 基于电子鼻与电子舌建立牛奶货架期预测模型[J]. 食品科学, 2022, 43(10): 302-307.
[16] 周秀丽, 刘全, 查恩辉. 电子鼻在掺假牛肉馅识别中的应用[J]. 食品工业科技, 2017, 38(4): 73-76, 80.
[17] 李佩泽, 赵世舜, 翁小辉, 等. 基于多传感器优化的农药残留快速检测新方法[J]. 吉林大学学报(工学版), 2022, 52(18): 1 951-1 956.
[18] XU J, LIU K, ZHANG C. Electronic nose for volatile organic compounds analysis in rice aging[J]. Trends in Food Science & Technology, 2021, 109: 83-93.
[19] 李国林, 孟繁博, 郑秀艳, 等. 红肉火龙果贮藏期间气味监测及桃吉尔霉对气味的影响[J]. 食品安全质量检测学报, 2018, 9(18): 4 834-4 838.
[20] KONDURU T, RAINS G C, LI C. Detecting sour skin infected onions using a customized gas sensor array[J]. Journal of Food Engineering, 2015, 160: 19-27.
[21] NOURI B, MOHTASEBI S S, RAFIEE S. Quality detection of pomegranate fruit infected with fungal disease[J]. International Journal of Food Properties, 2020, 23(1): 9-21.
[22] LIU Q, SUN K, ZHAO N, et al. Information fusion of hyperspectral imaging and electronic nose for evaluation of fungal contamination in strawberries during decay[J]. Postharvest Biology and Technology, 2019, 153: 152-160.
[23] LIU Q, ZHAO N, ZHOU D, et al. Discrimination and growth tracking of fungi contamination in peaches using electronic nose[J]. Food Chemistry, 2018, 262: 226-234.
[24] MAKARICHIAN A, CHAYJAN R A, AHMADI E, et al. Early detection and classification of fungal infection in garlic (A. sativum) using electronic nose[J]. Computers and Electronics in Agriculture, 2022, 192: 106575.
[25] WANG L, HU Q, PEI F, et al. Detection and identification of fungal growth on freeze-dried Agaricus bisporus using spectra and olfactory sensors[J]. Journal of the Science of Food and Agriculture, 2020, 100(7): 3 136-3 146.
[26] JIA W, LIANG G, TIAN H, et al. Electronic nose-based technique for rapid detection and recognition of moldy apples[J]. Sensors, 2019, 19(7): 1 526.
[27] JIMNEZ-CARVELO A M, GONZLEZ-CASADO A, BAGUR-GONZLEZ M G, et al. Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity: A review[J]. Food Research International, 2019, 122: 25-39.
[28] 王伟, 黄宇星, 余鸿敏. 基于CART决策树的冲压成形仿真数据挖掘[J]. 工程科学学报, 2018, 40(11): 1 373-1 379.
[29] CUTLER D R, EDWARDS JR T C, BEARD K H, et al. Radom forests for classification in ecology[J]. Ecology, 2007, 88(11): 2 783-2 792.
[30] 闫子茹, 张阳, 高聪聪, 等. 基于电子鼻检测香红梨腐烂程度[J]. 食品安全质量检测学报, 2021, 12(11): 4 529-4 535.
[31] 张建超, 张鹏, 薛友林, 等. 基于电子鼻表征霉心病苹果特征气味及无损检测模型建立[J]. 食品与发酵工业, 2022, 48(2): 267-273.
[32] 黄星奕, 孙兆燕, 田潇瑜, 等. 基于电子鼻技术的马铃薯真菌性腐烂病早期检测[J]. 食品工业科技, 2018, 39(24): 97-101.
[33] YANG Z, GAO J, WANG S, et al. Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time[J]. Computers and Electronics in Agriculture, 2021, 187: 106297.
[34] LIU C, CHU Z, WENG S, et al. Fusion of electronic nose and hyperspectral imaging for mutton freshness detection using input-modified convolution neural network[J]. Food Chemistry, 2022, 385: 132651.
[35] 高萍, 高士刚, 成玮, 等. 上海市草莓灰霉病菌对氟吡菌酰胺敏感性检测及抗性分子机制[J]. 植物保护, 2021, 47(4): 215-220.
[36] VENTURA-AGUILAR R I, BAUTISTA-BAOS S, HERNNDEZ-LPEZ M, et al. Detection of Alternaria alternata in tomato juice and fresh fruit by the production of its biomass, respiration, and volatile compounds[J]. International Journal of Food Microbiology, 2021, 342: 109092.
[37] 祁厚辰, 董轩瑜, 董刚刚, 等. 甜菜细菌性病害研究进展[J]. 中国糖料, 2021, 43(4): 64-69.
[38] 彭月, 顾兴芳, 张圣平, 等. 黄瓜细菌性角斑病研究进展[J]. 中国蔬菜, 2021(3): 28-35.
[39] GONG D, BI Y, LI S, et al. Trichothecium roseum infection promotes ripening of harvested muskmelon fruits and induces the release of specific volatile compound[J]. Journal of Plant Pathology, 2019, 101(3): 529-538.
[40] CHALUPOWICZ D, VELTMAN B, DROBY S, et al. Evaluating the use of biosensors for monitoring of Penicillium digitatum infection in citrus fruit[J]. Sensors and Actuators B: Chemical, 2020, 311: 127896.
[41] CHANG Z, LU J, QI H, et al. Bacterial infection potato tuber soft rot disease detection based on electronic nose[J]. Open Life Sciences, 2017, 12(1): 379-385.
[42] 张小琼, 庞林江, 陆国权, 等. 电子鼻技术对甘薯储藏中长喙壳菌侵染病变程度判别[J]. 传感技术学报, 2020, 33(11): 1 564-1 570.
[43] KIM S M, LEE S M, SEO J A, et al. Changes in volatile compounds emitted by fungal pathogen spoilage of apples during decay[J]. Postharvest Biology and Technology, 2018, 146: 51-59.
[44] PAN L, ZHANG W, ZHU N, et al. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography-mass spectrometry[J]. Food Research International, 2014, 62: 162-168.
[45] EZHILAN M, NESAKUMAR N, BABU K J, et al. Freshness assessment of broccoli using electronic nose[J]. Measurement, 2019, 145: 735-743.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.