Abstract
Objective: Construction of a simple and rapid method for the analysis of ganoderic acid A (GAA). Methods: The molecular imprinted polymer (MIP) that can specifically recognize ganoderic acid A (GAA) were prepared by cyclic voltammetric deposition using GAA as template molecule and o-phenylenediamine as functional monomer. The structure, morphology and electrochemical behavior of MIP were characterized by infrared spectroscopy, scanning electron microscopy and electrochemical methods. Using [Fe(CN)6]3-/4- as the active indicator, the analytical performance of the sensor for GAA was investigated. Porous MIP for GAA can be prepared on the electrode surface by one-step electropolymerization. Results: The results of quantitative analysis showed that the electrochemical signal of [Fe(CN)6]3-/4- had a good linear relationship with the logarithm of GAA concentration in the range of 1.0 pmol/L~1.0 μmol/L, and the detection limit was 0.21 pmol/L. The measured values of GAA in ethanol and water-soluble solution of Ganoderma lucidum powder were 1.15 nmol/L and 3.00 pmol/L, respectively. Conclusion: The MIP-based GAA electrochemical sensor can be used for the rapid determination of GAA in extract solution of Ganoderma lucidum powder.
Publication Date
4-25-2023
First Page
24
Last Page
30
DOI
10.13652/j.spjx.1003.5788.2022.80552
Recommended Citation
Gui-zhen, HUANG; Qing-xiang, WANG; Jin-mei, CHEN; Feng-ping, ZHAN; Lan, WEI; and Wan-rong, ZHENG
(2023)
"Preparation and analytical application of molecularly imprinted polymer electrochemical sensor forganoderic acid A,"
Food and Machinery: Vol. 39:
Iss.
1, Article 4.
DOI: 10.13652/j.spjx.1003.5788.2022.80552
Available at:
https://www.ifoodmm.cn/journal/vol39/iss1/4
References
[1] 国家药典委员会. 中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社, 2020: 20-30.
[2] 刘高强. "瑞草"灵芝之现代研究[J]. 菌物学报, 2020, 39(1): 1-6.
[3] 杨晰茗, 徐红艳, 刘巳齐, 等. 食用菌多糖调节炎症性肠病研究进展[J]. 食品与机械, 2021, 37(9): 211-217.
[4] LIU R M, ZHONG J J. Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells[J]. Phytomedicine, 2011, 18(5): 349-355.
[5] 张忠, 张劲松, 刘艳芳, 等. 分光光度法测定灵芝中总三萜含量方法探讨[J]. 上海农业学报, 2016, 32(1): 61-65.
[6] 刘盛荣, 戴金玉, 张维瑞, 等. 基于不同对照品的灵芝酸紫外及比色法分析[J]. 中国农学通报, 2015, 31(35): 104-109.
[7] 吴禾, 刘晔, 姜华. 紫外分光光度法测定灵芝及调脂灵中总灵芝酸的含量[J]. 解放军药学学报, 2006, 22(1): 74-76.
[8] 华丰. 离子色谱法测定灵芝超声水提取物中4种代表有机酸的含量[J]. 生物加工过程, 2021, 19(1): 74-78.
[9] SUN X L, WEI Y Y, LIU W G, et al. Determination of guanidinoacetic acid in feed by ion chromatography coupled with ultraviolet detection[J]. Chinese Journal of Chromatography, 2017, 35(10): 1 100-1 104.
[10] 王文正, 李腾, 李霞. 泰山赤灵芝中灵芝酸和灵芝酸A的测定[J]. 安徽农业科学, 2017, 45(33): 123-125.
[11] 黄文康, 黄琴伟, 郭增喜, 等. HPLC法测定赤芝不同生长期不同部位灵芝酸A的含量[J]. 中国食用菌, 2017, 36(1): 56-58.
[12] CHENG C R, YANG M, YU K, et al. Identification of metabolites of ganoderic acid d by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry[J]. Drug Metabolism and Disposition, 2012, 40(12): 2 307-2 314.
[13] 程寿年, 任书芳, 冯润妍, 等. 分子印迹技术在电化学传感领域的应用研究进展[J]. 分析科学学报, 2021, 37(6): 819-827.
[14] 崔丽伟, 贾馨雅, 刘俊桃, 等. 敌草隆分子印迹电化学传感器的制备及应用[J]. 分析科学学报, 2022, 38(2): 179-184.
[15] WANG S, PAN M F, LIU K X, et al. A SiO2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate[J]. Food Chemistry, 2022, 381: 132225.
[16] WANG Y Y, YAO L, LIU X, et al. CuCo2O4/N-Doped CNTs loaded with molecularly imprinted polymer for electrochemical sensor: Preparation, characterization and detection of metronidazole[J]. Biosensors and Bioelectronics, 2019, 142: 111483.
[17] ANIRUDHAN T S, ATHIRA V S, SEKHAR V C. Electrochemical sensing and nano molar level detection of Bisphenol-A with molecularly imprinted polymer tailored on multiwalled carbon nanotubes[J]. Polymer, 2018, 146: 312-320.
[18] ZHANG G H, YU Y, ZHANG L, et al. Precise detection of prostate specific antigen in serum: A surface molecular imprinted sensor based on novel cooperated signal amplification strategy[J]. Sensors and Actuators B: Chemical, 2020, 302: 126998.
[19] BELBRUNO J J. Molecularly imprinted polymers[J]. Chemical Reviews, 2019, 119(1): 94-119.
[20] ZHANG-PENG X R, WEI H, MA J, et al. Molecularly imprinted flexible sensor based on nitrogen-doped graphene for selective determination of formononetin[J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 217: 114805.
[21] 司凯萌, 张晓静, 彭友元. 基于纳米金—多壁碳纳米管增敏的分子印迹电化学传感器测定叶酸[J]. 化学研究与应用, 2020, 32(12): 2 158-2 164.
[22] LI J, LIU L L, WANG P G, et al. Potentiometric detection of saccharides based on highly ordered poly (aniline boronic acid) nanotubes[J]. Electrochimica Acta, 2014, 121: 369-375.
[23] KONG L J, PAN M F, FANG G Z, et al. An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film[J]. Analytical & Bioanalytical Chemistry, 2012, 404: 1 653-1 660.
[24] YAN C L, LIU X, ZHANG R X, et al. A selective strategy for determination of ascorbic acid based on molecular imprinted copolymer of o-phenylenediamine and pyrrole[J]. Journal of Electroanalytical Chemistry, 2016, 780: 276-281.
[25] 林珊, 袁红梅, 汪东, 等. 苯胺或邻苯二胺/YBCO杂化材料的性能[J]. 材料工程, 2021, 49(4): 167-172.
[26] 赫春香, 代鑫, 李玉莹, 等. 邻氨基酚—邻苯二胺共聚物/PVC膜电极直接电位法测定高酸度[J]. 辽宁师范大学学报(自然科学版), 2019, 42(2): 210-214.