•  
  •  
 

Corresponding Author(s)

院珍珍(1988—),女,青海大学副教授,博士。E-mail:yuanzhenzhen-12@163.com

Abstract

Objective: This study aimed to explore a kind of food with low glycemic index (GI) and SDS serial products. Methods: Using highland barley powder as raw material. The optimal enzymolysis conditions were determined by single factor test and response surface test. The hypoglycemic activity of α-glucosidase and α-amylase in vitro was evaluated. Results: The content of slow digestion starch in the enzymolysis highland barley powder reached the highest of 16.55%, under the control of the conditions of 60 U/g β-amylase, 3.5 h enzymolysis time, 51 ℃ enzymolysis temperature, and 1∶12 (g/mL) solid to liquid ratio. Meanwhile, the modified highland barley powder had a certain inhibitory effect on α-glucosidase and α-amylase. The highest inhibitory rates of the modified highland barley powder on α-glucosidase and α-amylase were 71.39% and 48.32%, respectively. Conclusion: Under the control of the optimal enzymatic hydrolysis conditions, the content of slow digestible starch in the enzymatic modified highland barley powder was significantly increased.

Publication Date

12-26-2023

First Page

217

Last Page

222

DOI

10.13652/j.spjx.1003.5788.2022.81010

References

[1] 邓鹏, 张婷婷, 王勇, 等. 青稞的营养功能及加工应用的研究进展[J]. 中国食物与营养, 2020, 26(2): 46-51. DENG P, ZHANG T T, WANG Y, et al. Research progress on nutritional function and processing application of highland barley[J]. Food and Nutrition in China, 2020, 26(2): 46-51.
[2] SHEN Y, HU C, ZHANG H, et al. Characteristics of three typical Chinese highland barley varieties: Phenolic compounds and antioxidant activities[J]. Journal of Food Biochemistry, 2018, 42(2): e12488.
[3] 景孝男, 党斌, 杨希娟, 等. 热处理对不同品种青稞全粉结构及理化特性的影响[J]. 食品与机械, 2021, 37(9): 44-52. JING X N, DANG B, YANG X J, et al. Effect of treatment on the structure and physicochemical properties of the whole barley powder of different varieties[J]. Food & Machinery, 2021, 37(9): 44-52.
[4] 次仁央宗. 浅谈青稞的成分研究进展及其开发利用现状[J]. 西藏科技, 2020(9): 11-12. CI R Y Z. Research progress and development and utilization of highland barley[J]. Tibet Science and Technology, 2020(9): 11-12.
[5] 胡少新, 李国良, 付立新, 等. 辐照玉米淀粉制备慢消化淀粉研究[J]. 黑龙江农业科学, 2020(8): 88-91. HU S X, LI G L, FU L X, et al. Study on slowly digestible starch preparing method from maize starch by irradiation[J]. Heilongjiang Agricultural Sciences, 2020(8): 88-91.
[6] 张花, 宋晓凡, 院珍珍, 等. α-淀粉酶降低青稞快消化淀粉含量工艺优化[J]. 食品与机械, 2022, 38(12): 199-204. ZHANG H, SONG X F, YUAN Z Z, et al. Study on the process of α-amylase reduces the content of rapidly digestion starch in highland barley[J]. Food & Machinery, 2022, 38(12): 199-204.
[7] 张斌. 慢消化淀粉的制备、性质及其形成机理研究[D]. 广州: 华南理工大学, 2011: 7-8. ZHANG B. Slowlydigestable starch: Preparation, characterizations, and mechanism[D]. Guangzhou: South China University of Technology, 2011: 7-8.
[8] 王润, 党斌, 杨希娟, 等. 低血糖生成指数食品的研究现状与展望[J]. 青海农林科技, 2018(3): 68-71, 88. WANG R, DANG B, YANG X J, et al. Research review of low glycemic index foods[J]. Qinghai Agriculture and Forestry Science and Technology, 2018(3): 68-71, 88.
[9] XIA X, XING Y, LI G, et al. Antioxidant activity of whole grain Qingke (Tibetan Hordeum vulgare L.) toward oxidative stress in D-galactose induced mouse model[J]. Journal of Functional Foods, 2018, 45: 355-362.
[10] 陈彩雯, 田佳宁, 于坤正, 等. 电场处理对普鲁兰酶水解糯米淀粉的影响[J]. 食品与机械, 2022, 38(7): 1-6, 67. CHEN C W, TIAN J N, YU K Z, et al. Effect of the electric field treatment on the pullulanase-catalyzed hydrolysis of waxy rice starch[J]. Food & Machinery, 2022, 38(7): 1-6, 67.
[11] 陈冰冰, 杨奕, 李嘉颐, 等. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究[J]. 食品与机械, 2022, 38(8): 213-221. CHENG B B, YANG Y, LI J Y, et al. Preparation, selenium content and stability of antihypertensive peptides from selenium-enriched Moringa oleifera seed protein by enzymatic hydrolysis[J]. Food & Machinery, 2022, 38(8): 213-221.
[12] 安攀宇. 青稞慢性消化淀粉制备条件的优化研究[J]. 现代食品, 2016(13): 111-114. AN P Y. Study on optimization of preparation conditions of barley starch for chronic[J]. Modern Food, 2016(13): 111-114.
[13] 张倩倩, 王金斌, 吴潇, 等. 青稞慢性消化淀粉制备条件优化的研究[J]. 上海农业学报, 2015, 31(5): 6-12. ZHANG Q Q, WANG J B, WU X, et al. Optimization of naked barley slowly digestible starch preparing conditions[J]. Acta Agriculturae Shanghai, 2015, 31(5): 6-12.
[14] 李志霞, 聂继云, 闫震, 等. 响应面法对3,5-二硝基水杨酸比色法测定水果中还原糖含量条件的优化[J]. 分析测试学报, 2016, 35(10): 1 283-1 288. LI Z X, NIE J Y, YAN Z, et al. Optimization of 3, 5-Dinitrosalicylic acid colorimetry determination conditions of reducing sugar in fruits by response surface method[J]. Journal of Instrumental Analysis, 2016, 35(10): 1 283-1 288.
[15] 缪铭, 张涛, 江波. 慢消化淀粉体外测定方法的探讨[J]. 食品与发酵工业, 2008, 34(12): 143-146. LIAO M, ZHANG T, JAING B. Discussion on digestibility of slowly digestible starch analysis in vitro[J]. Food and Fermentation Industries, 2008, 34(12): 143-146.
[16] 赖晓桦, 邓甜, 胡经飞, 等. 米糠发酵产物抑制α-葡萄糖苷酶的工艺优化[J]. 食品工业科技, 2021, 42(4): 128-134. LAI X H, DENG T, HU J F, et al. Optimization of inhibition of α-glucosidase by rice bran fermentation products[J]. Science and Technology of Food Industry, 2021, 42(4): 128-134.
[17] 梁宗瑶, 魏园园, 任维维, 等. 橡子仁萃取物成分分析及对α-淀粉酶、α-葡萄糖苷酶的抑制作用[J]. 食品工业科技, 2021, 42(17): 47-55. LIANG Z Y, WEI Y Y, REN W W, et al. Composition analysis and inhibitory effect against α-amylase and α-glucosidase of acorn kernel extractions[J]. Science and Technology of Food Industry, 2021, 42(17): 47-55.
[18] 高群玉, 王琳. 双酶协同制备玉米慢消化淀粉及其性质研究[J]. 现代食品科技, 2013, 29(10): 2 425-2 430. GAO Q Y, WANG L. Preparation and Properties of corn slowly digestible starch withdualenzymes treatment[J]. Modern Food Science and Technology, 2013, 29(10): 2 425-2 430.
[19] 张二娟, 何小维, 吴磊, 等. 缓慢消化淀粉的研究进展[J]. 粮食与饲料工业, 2009(3): 24-26. ZHANG E J, HE X W, WU L, et al. Research progress of slowly digestible starch[J]. Cereal and Feed Industry, 2009(3): 24-26.
[20] 雷俊华, 高群玉. 用β-淀粉酶制备蜡质大米糊精及其性质研究[J]. 食品与发酵工业, 2014, 40(10): 22-26. LEI J H, GAO Q Y. Preparation of waxy rice dextrin with β-amylase treatment and study on its properties[J]. Food and Fermentation Industries, 2014, 40(10): 22-26.
[21] 于欢, 李露, 王思爽, 等. 响应面法优化酶法提取蜜环菌多肽及其抗疲劳活性[J]. 食品工业科技, 2017, 38(23): 85-91. YU H, LI L, WANG S S, et al. Optimization of enzymatic hydrolysis of Armillaria mellea Vahl exFr peptides by response surface methodology and its anti-fatigue ability[J]. Science and Technology of Food Industry, 2017, 38(23): 85-91.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.