Abstract
Objective: The purpose of this study was to investigate the drying characteristics and establish the kinetic model of Antarctic krill during spin-flash drying. The drying experiments were carried out at 120 ℃ to 180 ℃. Methods: Six common thin-layer drying models were selected to fit the experimental data. Further, the equations of drying model constant and temperature were established to obtain the model expression and validate the optimal drying model. The effective moisture diffusion coefficients were calculated by Fick's second law. Results: The results showed the drying temperature had a significant effect on drying thermal efficiency and drying rate. The spin-flash drying of Antarctic krill was a falling rate drying process at 130 ℃ to 180 ℃. The Page model was suitable for describing and predicting the spin-flash drying process of Antarctic krill. The constant term equations of the model were established by regression analysis, which were k=exp(-27.532 1+0.301 8T-8.538 2×10-4T2)and n=14.010 6-0.157 67T+4.750 9×10-4T2. As the drying temperature increasing, the effective moisture diffusion coefficient increased from 2.539 35×10-7 m2/s to 13.889 64×10-7 m2/s. Conclusion: The spin-flash drying method had the advantages of higher effective moisture diffusion coefficient and higher drying efficiency, which can effectively protect the thermal sensitive composition in Antarctic krill from being damaged and improve the product quality.
Publication Date
12-26-2023
First Page
42
Last Page
48
DOI
10.13652/j.spjx.1003.5788.2022.81117
Recommended Citation
Jiayu, TAN; Jie, OUYANG; Tiantian, MA; and Jia, SHEN
(2023)
"Spin-flash drying characteristics and kinetic model of antarctic krill,"
Food and Machinery: Vol. 39:
Iss.
10, Article 6.
DOI: 10.13652/j.spjx.1003.5788.2022.81117
Available at:
https://www.ifoodmm.cn/journal/vol39/iss10/6
References
[1] 刘俊超, 贾明秀, 冯卫东, 等. 基于RF和GAM模型的南极磷虾资源分布与环境因子关系研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(8): 20-29.
LIU J C, JIA M X, FENG W D, et al. Spatial-temporal distribution of Antarctic krill (Euphausia superba) resource and its association with environment factors revealed with RF and GAM models[J]. Periodical of Ocean University of China, 2021, 51(8): 20-29.
[2] 岳冬冬, 王鲁民. 中国南极磷虾渔业发展的微观解析与对策研究: 以辽渔集团有限公司为例[J]. 中国农业大学学报, 2018, 23(7): 227-238.
YUE D D, WANG L M. Micro analysis and countermeasure research on the development of Antarctic krill fisheries in China: A case study of Liaoyu Group Co Ltd[J]. Journal of China Agricultural University, 2018, 23(7): 227-238.
[3] 杨柳, 王鲁民, 周国燕, 等. 南极磷虾粉的加工工艺、品质特性与应用研究进展[J]. 海洋渔业, 2022, 44(4): 501-512.
YANG L, WANG L M, ZHOU G Y, et al. Processing technology, quality characteristics and application status of Antarctic krill powder[J]. Marine Fisheries, 2022, 44(4): 501-512.
[4] 邵晨. 船上加工处理对南极磷虾保藏的初步研究[D]. 上海: 上海海洋大学, 2022: 39-40.
SHAO C. Preliminary study on preservation of Antarctic krill shipboard processing[D]. Shanghai: Shanghai Ocean University, 2022: 39-40.
[5] 赵昕源, 欧阳杰, 马田田, 等. 南极磷虾体内主要营养活性物质在热处理过程中的流向[J]. 水产学报, 2021, 45(7): 1 172-1 180.
ZHAN X Y, OUYANG J, MA T T, et al. Flow direction of main nutrient substances in Antarctic krill (Euphausia superba) during heat treatment[J]. Journal of Fisheries of China, 2021, 45(7): 1 172-1 180.
[6] 袁越锦, 荆雪松, 雷旭, 等. 旋转闪蒸干燥设备的流体动力学分析[J]. 陕西科技大学学报, 2018, 36(5): 134-140.
YUAN Y J, JING X S, LEI X, et al. Hydrodynamics analysis of spin flash drying equipment[J]. Journal of Shanxi University of Science & Technology, 2018, 36(5): 134-140.
[7] 马田田. 南极磷虾粉干燥工艺研究[D]. 上海: 上海海洋大学, 2019: 52-53.
MA T T. Study on drying technology of Antarctic krill powder[D]. Shanghai: Shanghai Ocean University, 2019: 52-53.
[8] ONWUDE D I, HASHIM N, JANIUS R B, et al. Modeling the thin-layer drying of fruits and vegetables: A review[J]. Comprehensive Reviews in Food Science & Food Safety, 2016, 15(3): 599-618.
[9] 贾敏, 丛海花, 薛长湖, 等. 鲍鱼热风干燥动力学及干燥过程数学模拟[J]. 食品工业科技, 2012, 33(3): 72-76, 80.
JIA M, CONG H H, XUE C H, et al. Drying kinetics and mathematical modeling of abalone during the hot-air drying process[J]. Science and Technology of Food Industry, 2012, 33(3): 72-76, 80.
[10] ARIF K M, MAHSA M, OBEIDULLAH M D, et al. Heat and mass transport analysis of the drying of freshwater fishes by a forced convective air-dryer[J]. Journal of Food Process Engineering, 2021, 44(1): 1-21.
[11] 于华宇, 阿地里江, 龙薇运, 等. 实验型喷雾干燥机低温干燥牛初乳粉的干燥性能[J]. 农业工程学报, 2010, 26(10): 361-366.
YU H Y, ARDIL A, LONG W Y, et al. Low-temperature spray drying performance of laboratory spray dryer for bovine colostrum powder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 361-366.
[12] KILIC A. Low temperature and high velocity (LTHV) application in drying: Characteristics and effects on the fish quality[J]. Journal of Food Engineering, 2009, 91(1): 173-182.
[13] LIU Y H, SUN Y, MIAO S, et al. Drying characteristics of ultrasound assisted hot air drying of Flos lonicerae[J]. Journal of Food Science and Technology, 2015, 52(8): 4 955-4 964.
[14] 桂青, 周立军, 王秀全, 等. 五指毛桃的热风干燥特性及动力学模型[J]. 食品工业科技, 2021, 42(8): 58-63.
GUI Q, ZHOU L J, WANG X Q, et al. Hot air drying characteristics and dynamics model of Ficus hirta Vahl.[J]. Science and Technology of Food Industry, 2021, 42(8): 58-63.
[15] SAHIN M, DOYMAZ I. Estimation of cauliflower mass transfer parameters during convective drying[J]. Heat and Mass Transfer, 2017, 53(2): 507-517.
[16] SADEGHI E, MOVAGHARNEJAD K, ASL A H. Mathematical modeling of infrared radiation thin-layer drying of pumpkin samples under natural and forced convection[J]. Journal of Food Processing and Preservation, 2019, 43(12): e14229.
[17] DOYMAZ I. Infrared drying kinetics and quality characteristics of carrot slices[J]. Journal of Food Processing and Preservation, 2015, 39(6): 2 738-2 745.
[18] 陈思奇, 顾苑婷, 王霖岚, 等. 刺梨不同干燥模型建立及综合品质分析[J]. 食品科学, 2020, 41(3): 47-54.
CHEN S Q, GU Y T, WANG L L, et al. Drying modeling and comprehensive quality analysis of rosa roxburghii tratt fruit[J]. Food Science, 2020, 41(3): 47-54.
[19] AREPALLY D, RADDY S R, MALIK G K, et al. Mathematical modelling, energy and energy analysis of tomato slices in a mixed mode natural convection solar dryer[J]. Chemical Science International Journal, 2017, 20(4): 1-11.
[20] 陈计远, 王粮局, 王红英, 等. 鱼膨化饲料热风干燥动力学模型及湿热特性[J]. 农业工程学报, 2021, 37(14): 317-322.
CHEN J Y, WANG L J, WANG H Y, et al. Drying kinetic model and hygrothermal characteristics of fish extruded feed during hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 317-322.
[21] 张倩, 李世榆, 李秀辰, 等. 裙带菜微波真空干燥质热传递特性与品质优化[J]. 食品与机械, 2022, 38(7): 166-173.
ZHAN Q, LI S Y, LI X C, et al. Mass and heat transfer characteristics and quality optimization of microwave vacuum drying for wakame[J]. Food & Machinery, 2022, 38(7): 166-173.
[22] MARTINEZ-DELGADO A A, KHANDUAL S, VILLANUEVA-RODRIGUEZ S J. Chemical stability of astaxanthin integrated into a food matrix: Effects of food processing and methods for preservation[J]. Food Chemistry, 2017, 255: 23-30.
[23] 龚秀娟. 物料干燥系统热湿传递及其交叉作用的热力学分析[D]. 兰州: 兰州理工大学, 2017: 5-6.
GONG X J. Thermodynamic analysis of heat and moisture transfer and crossing of material drying system[D]. Lanzhou: Lanzhou University of Technology, 2017: 5-6.
[24] 马田田, 欧阳杰, 赵昕源, 等. 不同干燥方式下南极磷虾干燥特性与主要营养物质变化[J]. 渔业现代化, 2022, 49(2): 94-101.
MA T T, OUYANG J, ZHAN X Y, et al. Changes in drying characteristics and major nutrients of Antarctic krill under different drying methods[J]. Fishery Modernization, 2022, 49(2): 94-101.
[25] 王宝和. 干燥动力学研究综述[J]. 干燥技术与设备, 2009, 7(1): 51-56.
WANG B H. Review of drying kinetics[J]. Drying Technology and Equipment, 2009, 7(1): 51-56.
[26] 何学连. 白对虾干燥工艺的研究[D]. 无锡: 江南大学, 2008: 37-38.
HE X L. Study on drying technology of white shrimps[D]. Wuxi: Jiangnan University, 2008: 37-38.
[27] 吴佰林, 薛勇, 王玉, 等. 鲅鱼热风干燥动力学及品质变化研究[J]. 食品科技, 2018, 43(10): 174-180.
WU B L, XUE Y, WANG Y, et al. Study on the kinetics and quality changes of hot air drying of Scomberomorus niphonius[J]. Food Science and Technology, 2018, 43(10): 174-180.
[28] 刘海波, 王佳倩, 李耀, 等. 马铃薯片热泵干燥动力学研究及其干燥工艺优化[J]. 中国粮油学报, 2022, 37(10): 106-115.
LIU H B, WANG J Q, LI Y, et al. Study on drying kinetics of potato chips by heat pump and optimization of drying process[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(10): 106-115.
[29] 楚文靖, 盛丹梅, 张楠, 等. 红心火龙果热风干燥动力学模型及品质变化[J]. 食品科学, 2019, 40(17): 150-155.
CHU W J, SHENG D M, ZHANG N, et al. Hot-air drying of red-fleshed pitaya: Kinetic modelling and quality changes[J]. Food Science, 2019, 40(17): 150-155.
[30] 张雪波, 刘显茜, 邹三全, 等. 哈密瓜切片热风干燥特性及数学模型[J]. 食品与机械, 2022, 38(2): 130-136, 142.
ZHANG X B, LIU X Q, ZHOU S Q, et al. Hot-air drying characteristics and mathematical model of cantaloupe slices[J]. Food & Machinery, 2022, 38(2): 130-136, 142.
[31] 魏彦君. 南美白对虾超声波辅助热泵干燥动力学及品质特性研究[D]. 淄博: 山东理工大学, 2014: 36.
WEI Y J. Research on drying kinetics and quality properties of Penaeus vanmamei dried by ultrasound-assisted heat pump dehumidifier[D]. Zibo: Shandong University of Technology, 2014: 36.
[32] 张建友, 宋新苗, 陈志明, 等. 中国毛虾红外热风耦合干燥特性及动力学模型研究[J]. 核农学报, 2019, 33(3): 555-564.
ZHANG J Y, SONG X M, CHEN Z M, et al. Drying characteristics and kinetics of Acetes chinensis by infrared radiation hot air coupled drying[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(3): 555-564.