•  
  •  
 

Abstract

Objective: Improving the setting value adjustment ability of the speed control loop and temperature control loop of food entering the freezing tunnel. Methods: By treating the speed and temperature control circuits of the conveyor belt separately, a fuzzy control system for food freezing temperature control was designed. The control system included a proportional-integral-differential controller for the food conveyor roller speed, a proportional-integral controller for temperature regulation in the freezing tunnel, and a Takagi-Sugeno fuzzy controller to set the temperature set point of the temperature regulation proportional-integral controller. Results: When the mass flow rate of frozen food was increased from 650 kg/h to 700 kg/h, and the speed of the drive roller being increased from 1.62 r/min to 1.75 r/min, the final food temperature could be quickly restored to about -18 ℃. When a temperature disturbance of +5 ℃occurred at the food inlet, the fuzzy controller acts to keep the food outlet temperature near the expected value of -18 ℃. In summary, by selecting system parameters that allow fast response and relatively low overshoot, the designed control system can realize that the value of the output variable does not fluctuate greatly near the set value. Conclusion: The research results can be used to develop the food freezing temperature control system in the food processing plant of the cryogenic freezing tunnel, and improve the ability of food freezing temperature control.

Publication Date

12-26-2023

First Page

116

Last Page

124

DOI

10.13652/j.spjx.1003.5788.2023.60099

References

[1] 韩强, 刘鑫, 周永帅, 等. 勾调自动化在白酒生产中的应用研究进展[J]. 食品与机械, 2021, 37(12): 215-220, 231. HAN Q, LIU X, ZHOU Y S, et al. Research progress on the application of blending automation in the production of Baijiu[J]. Food & Machinery, 2021, 37(12): 215-220, 231.
[2] 甄仌, 苏格毅, 张雪, 等. 静电场对冷冻食品冰晶生长影响的相场法模拟[J]. 食品与机械, 2022, 38(2): 143-147. ZHEN B, SU G Y, ZHANG X, et al. Phase field simulation of the effect from electrostatic field on frozen food ice crystal growth[J]. Food & Machinery, 2022, 38(2): 143-147.
[3] KUMAR N. Fundamentals of conveyors[M]// Transporting operations of food materials within food factories[S.l.]: Woodhead Publishing, 2023: 221-251.
[4] 周舟, 杜险峰, 曹蒙, 等. 冷冻温度与冷冻中心温度对冷冻面团面条品质的影响[J]. 食品工业科技, 2023, 44(14): 88-94. ZHOU Z, DU X F, CAO M, et al. Effects of freezing temperature and freezing center temperature on the quality of frozen dough noodles[J]. Science and Technology of Food Industry, 2023, 44(14): 88-94.
[5] BAO Y, ERTBJERG P, ESTEVEZ M, et al. Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(6): 5 548-5 569.
[6] WANG Y. Case study on ventilation and cooling control technology of multi heat source coupling in long distance subsea tunnel construction[J]. Case Studies in Thermal Engineering, 2021, 26: 101061.
[7] SVENDSEN E S, WIDELL K N, TVEIT G M, et al. Industrial methods of freezing, thawing and subsequent chilled storage ofwhitefish[J]. Journal of Food Engineering, 2022, 315: 110803.
[8] 黄崇富, 常宇, 刘力超. 基于IPSO-BPNN-PID控制的食品并联机器人抓取技术[J]. 食品与机械, 2022, 38(8): 94-98, 126. HUANG C F, CHANG Y, LIU L C. Research on food parallel robot grasping technology based on IPSO-BPNN-PID control[J]. Food & Machinery, 2022, 38(8): 94-98, 126.
[9] XUAN K, GU G.Optimisation of multi-channel to single channel control method for food packaging line based on PLC[J]. International Journal of Manufacturing Technology and Management, 2022, 36(2/3/4): 112-126.
[10] 刘伟. 基于模糊神经网络的啤酒灌装精度控制技术[J]. 食品与机械, 2022, 38(4): 104-108. LIU W. Beer filling precision control technology based on fuzzy neural network[J]. Food & Machinery, 2022, 38(4): 104-108.
[11] NARSAIAH K, BEDI V, GHODKI B M, et al. Heat transfer modeling of shrimp in tunnel type individual quick freezing system[J]. Journal of Food Process Engineering, 2021, 44(11): e13838.
[12] 朱美金, 曹栋, 殷茹. 高纯度磷脂酰肌醇的提取工艺研究[J]. 中国油脂, 2018, 43(2): 129-133. ZHU M J, CAO D, YIN R. Extraction of high purity phosphatidylinositol[J]. China Oils and Fats, 2018, 43(2): 129-133.
[13] 吴光辉. 冷冻调理食品的质量控制[J]. 现代食品, 2019(11): 27-30. WU G H. Quality control of frozen conditioning food[J]. Modern Food, 2019(11): 27-30.
[14] 王安敏, 刘聪毅. 基于BP神经网络PID的快速冷冻系统设计[J]. 计算机与数字工程, 2020, 48(8): 1 902-1 906. WANG M A, LIU C Y. Design of fast refrigeration system based on BP neural network PID[J]. Computer & Digital Engineering, 2020, 48(8): 1 902-1 906.
[15] LENG D, ZHANG H, TIAN C, et al. Low temperature preservation developed for special foods in East Asia: A review[J]. Journal of Food Processing and Preservation, 2022, 46(1): e16176.
[16] AMBAW A, FADIJI T, OPARA U L. Thermo-mechanical analysis in the fresh fruit cold chain: A review on recent advances[J]. Foods, 2021, 10(6): 1 357.
[17] 王雅怡, 付晓康, 贺便, 等. 不同处理方法对洋蓟膳食纤维结构及理化性质的影响[J]. 食品工业科技, 2022, 43(22): 83-89. WANG Y Y, FU X K, HE B, et al. Effects of different treatments on the structure and physicochemical properties of artichoke dietary fiber[J]. Science and Technology of Food Industry, 2022, 43(22): 83-89.
[18] 李晓燕, 陈杰, 樊博玮, 等. 浸渍式冷冻技术的研究进展[J]. 食品与发酵工业, 2020, 46(15): 307-312. LI X Y, CHEN J, FAN B W, et al. Research progress on immersion chilling and freezing[J]. Food and Fermentation Industries, 2020, 46(15): 307-312.
[19] JAFARZADEH S, JAFARI S M. Impact of metal nanoparticles on the mechanical, barrier, optical and thermal properties of biodegradable food packaging materials[J]. Critical Reviews in Food Science and Nutrition, 2021, 61(16): 2 640-2 658.
[20] 张朔, 王维, 李一喆, 等. 冷冻干燥过程强化中冷冻阶段优化的研究进展[J]. 化工进展, 2020, 39(8): 2 937-2 946. ZHANG S, WANG W, LI Y Z, et al. Research progress on optimization of freezing stage in enhancement of freeze-drying[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2 937-2 946.
[21] 唐婉, 谢晶, 王金锋, 等. 虾仁热物性的计算及冻结时间的数值模拟[J]. 食品与机械, 2018, 34(2): 106-110. TANG W, XIE J, WANG J F, et al. Thermal physical property calculation and freezing time numerical simulation of shrimp[J]. Food & Machinery, 2018, 34(2): 106-110.
[22] 尚长沛, 张松泓. 基于EMD和AR模型的轴承故障诊断[J]. 食品与机械, 2019, 35(7): 117-120, 146. SHANG C P, ZHANG S H. Research on bearing fault diagnosis method based on EMD and AR model[J]. Food & Machinery, 2019, 35(7): 117-120, 146.
[23] 郭光远, 樊海潮, 唐正明. 平滑转移空间自回归模型下Ⅳ方法参数估计值的一致性研究[J]. 统计研究, 2018, 35(4): 117-128. GUO G Y, FAN H C, TANG Z M. Research on the consistency of IV estimator under smooth transition spatial autoregressive models[J]. Statistical Research, 2018, 35(4): 117-128.
[24] GAN Y, BAI Y, LOU Y, et al. Decorate the newcomers: Visual domain prompt for continual test time adaptation[C/OL]// Proceedings of the AAAI Conference on Artificial Intelligence. (2023-06-26) [2023-11-09]. https://ojs.aaai.org/index.php/AAAI/article/view/25922.
[25] 牟向伟, 南香港, 于新业, 等. 基于模糊控制多工位自动装粉系统设计与试验[J]. 食品与机械, 2023, 39(1): 73-80, 156. MOU X W, NAN X G, YU X Y, et al. Design and experiment of multi-station automatic powder loading system based on fuzzy control[J]. Food & Machinery, 2023, 39(1): 73-80, 156.
[26] BEI H, MAO Y, WANG W, et al. Fuzzy clustering method based on improved weighted distance[J]. Mathematical Problems in Engineering, 2021, 2 021: 1-11.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.