•  
  •  
 

Abstract

Objective: Accurate identification and location of paper packaging box defects. Methods: The improved network model of Faster R-CNN was applied to automatically detect box defects. The data of the training set picture was enhanced and noise was added to improve the training accuracy and robustness of the model. The feature extraction network was replaced with ResNet50, and the feature pyramid network (FPN) was fused to improve the multi-scale detection ability of the model. K-means++ was used to cluster the defect scale in the dataset and optimize the anchor box scheme. Results: The average accuracy (AP) of the improved Faster R-CNN model on the test set reached 93.9%, and the detection speed reached 8.65 f/s. Conclusion: The improved Faster R-CNN model can effectively detect and locate box defects, which can be applied to the automatic detection and sorting of box defects.

Publication Date

12-26-2023

First Page

131

Last Page

136,151

DOI

10.13652/j.spjx.1003.5788.2023.80475

References

[1] 李建明, 杨挺, 王惠栋. 基于深度学习的工业自动化包装缺陷检测方法[J]. 包装工程, 2020, 41(7): 175-184. LI J M, YANG T, WANG H D. Industrial automation packaging defect detection method based on deep learning[J]. Packaging Engineering, 2020, 41(7): 175-184.
[2] 楚晗, 王爱霞, 高尊华, 等. 食品多层包装内包缺陷的问题分析及处理[J]. 包装工程, 2019, 40(15): 200-205. CHU H, WANG A X, GAO Z H, et al. Analysis and treatment of defects in inner packaging of food multi-layer package[J]. Packaging Engineering, 2019, 40(15): 200-205.
[3] 陈雪纯, 方宇伦, 杜世昌, 等. 基于深度学习的包装缺陷快速检测方法[J]. 机械设计与研究, 2021, 37(6): 165-169, 178. CHEN X C, FANG Y L, DU S C, et al. Rapid packaging defect detection method based on deep learning[J]. Machine Design & Research, 2021, 37(6): 165-169, 178.
[4] 李志诚, 曾志强. 基于改进YOLOv3的卷纸包装缺陷实时检测算法[J]. 中国造纸学报, 2022, 37(2): 87-93. LI Z C, ZENG Z Q. Real-time defect detection algorithm for roll paper packaging based on improved YOLOv3[J]. Transactions of China Pulp and Paper, 2022, 37(2): 87-93.
[5] 暴泰焚, 焦慧敏, 张皓, 等. 基于语义分割的纸质包装产品表面缺陷检测[J]. 制造业自动化, 2023, 45(3): 216-220. BAO T F, JIAO H M, ZHANG H, et al. Surface defect detection of paper packaging products based on semantic segmentation[J]. Manufacturing Automation, 2023, 45(3): 216-220.
[6] 邓姗姗, 黄慧, 马燕. 基于改进Faster R-CNN的小目标检测算法[J]. 计算机工程与科学, 2023, 45(5): 869-877. DENG S S, HUANG H, MA Y. A small object detection algorithm based on improved Faster R-CNN[J]. Computer Engineering & Science, 2023, 45(5): 869-877.
[7] 朱豪, 周顺勇, 刘学, 等. 基于深度学习的单阶段目标检测算法综述[J]. 工业控制计算机, 2023, 36(4): 101-103. ZHU H, ZHOU S Y, LIU X, et al. Survey of single-stage object detection algorithms based on deep learning[J]. Industrial Control Computer, 2023, 36(4): 101-103.
[8] 刘寅, 夏舸, 王强, 等. 基于Faster RCNN的燃气轮机滑油管红外监测与识别[J]. 激光与红外, 2023, 53(4): 544-550. LIU Y, XIA G, WANG Q, et al. Infrared monitoring and identification of gas turbine oil pipe based on Faster RCNN[J]. Laser & Infrared, 2023, 53(4): 544-550.
[9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1 137-1 149.
[10] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. [S.l.]: IEEE Press, 2016: 770-778.
[11] BUSLAEV A, IGLOVIKOV V I, KHVEDCHENYA E, et al. Albumentations: Fast and flexible image augmentations[J]. Information, 2020, 11(2): 125.
[12] NAZARE T S, DA COSTA G B P, CONTATO W A, et al. Deep convolutional neural networks and noisy images[C]// Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 22nd Iberoamerican Congress, CIARP 2017, Valparaíso, Chile, November 7-10, 2017, Proceedings 22. [S.l.]: Springer International Publishing, 2018: 416-424.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14. [S.l.]: Springer International Publishing, 2016: 21-37.
[14] REDMON J, FARHADI A. YOLOv3: An incremental improvement[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 18040276.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10934.
[16] 范加利, 田少兵, 黄葵, 等. 基于Faster R-CNN的航母舰面多尺度目标检测算法[J]. 系统工程与电子技术, 2022, 44(1): 40-46. FAN J L, TIAN S B, HUANG K, et al. Multi-scale object target detection algorithm for aircraft carrier surface based on Faster R-CNN[J]. Systems Engineering and Electronics, 2022, 44(1): 40-46.
[17] 王昊, 查涛, 乜灵梅, 等. 基于改进Faster R-CNN的隐形眼镜表面缺陷检测算法[J]. 激光与光电子学进展, 2023, 60(20): 141-147. WANG H, ZHA T, NIE L M, et al. Contact lens surface defect detection algorithm based on improved Faster R-CNN[J]. Laser & Optoelectronics Progress, 2023, 60(20): 141-147.
[18] 常莉莉, 王贤敏, 王春胜. 基于改进Faster R-CNN的码头自动识别[J]. 遥感学报, 2022, 26(4): 752-765. CHANG L L, WANG X M, WANG C S. Automatic dock identification based on improved Faster R-CNN[J]. National Remote Sensing Bulletin, 2022, 26(4): 752-765.
[19] XIE J, PANG Y W, PAN J, et al. Complementary feature pyramid network for object detection[J]. Acm Transactions on Multimedia Computing Communications and Applications, 2023, 19(6): 1-15.
[20] HE K, GKIOXARI G, DOLLR P, et al. Mask R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2017: 2 980-2 988.
[21] 张志凯, 韩红章, 赵雪芊, 等. 基于改进YOLOv3模型的软包装食品自动识别方法[J]. 食品与机械, 2023, 39(5): 95-100. ZHANG Z K, HAN H Z, ZHAO X Q, et al. Automatic recognition method for soft packaged food based on improved YOLOv3 model[J]. Food & Machinery, 2023, 39(5): 95-100.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.