Abstract
Objective: This study aimed to explore the potential use of honey peach kernel as a by-product of characteristic agricultural product processing. Methods: The processing technology was optimized based on a single factor test and response surface test by analyzing the effects of enzyme addition amount, ultrasonic temperature, ethanol concentration, and ultrasonic time on the extraction amount of peach kernel polyphenols. Additionally, the antioxidant activities of the extracted polyphenols were studied. Results: The results showed that the optimal extraction parameters were as follows: enzyme adding quantity 5%, ultrasonic temperature 63 ℃, ethanol concentration 60%, and ultrasonic time 37 min. Under this condition, the extraction amount of polyphenols was 8.63 mg/g. The antioxidant results showed that the scavenging rates of ABTS free radical, DPPH free radical, OH free radical, and O-2 free radical were 75.22%, 85.91%, 44.72%, and 45.76%, respectively. The IC50 of the four free radicals were 0.099, 0.098, 0.332, and 0.320 mg/mL, respectively. Conclusion: The approach of ultrasonic-assisted enzymolysis can effectively extract the polyphenols in the honey peach kernel, the polyphenols of the honey peach kernel had good antioxidant activity.
Publication Date
12-26-2023
First Page
204
Last Page
210
DOI
10.13652/j.spjx.1003.5788.2023.80202
Recommended Citation
Mingyi, GUO; Yan, DENG; Tianxin, WANG; Chuantao, ZENG; and Huachuang, WU
(2023)
"Optimization of extraction and antioxidant activities of polyphenols from honey peachkernel by ultrasonic-assisted enzymolysis approach,"
Food and Machinery: Vol. 39:
Iss.
11, Article 32.
DOI: 10.13652/j.spjx.1003.5788.2023.80202
Available at:
https://www.ifoodmm.cn/journal/vol39/iss11/32
References
[1] 杨立风, 马超, 张明, 等. 水蜜桃疏果多酚类物质提取及抗氧化活性研究[J]. 中国果菜, 2020, 40(4): 16-21, 28.
YANG L F, MA C, ZHANG M, et al. Study on extraction and antioxidant activity of polyphenols from thinned fruits of honey peach[J]. China Fruit & Vegetable, 2020, 40(4): 16-21, 28.
[2] 卢娟芳, 刘盛雨, 芦旺, 等. 不同类型桃果肉酚类物质及抗氧化活性分析[J]. 中国农业科学, 2017, 50(16): 3 205-3 214.
LU J F, LIU S Y, LU W, et al. Phenolic profiles and antioxidant activity of fruit pulp from different types of peaches[J]. Scientia Agricultura Sinica, 2017, 50(16): 3 205-3 214.
[3] 张岩, 张盛明, 方桂珍. Ce掺杂固体酸活化的碱木质素的抗氧化性能[J]. 高等学校化学学报, 2018, 39(6): 1 255-1 259.
ZHANG Y, ZHANG S M, FANG G Z. Antioxidant property of catalyzed lignosulfonate using S2O/ZrO2 doped cerium as catalysts[J]. Chemical Journal of Chinese Universities, 2018, 39(6): 1 255-1 259.
[4] HE X Y, WU L J, WANG W X, et al. Amygdalin-a pharmacological and toxicological review[J]. Journal of Ethnopharmacology, 2020, 254: 112717.
[5] ZHANG T, YANG S, ZHANG B, et al. Insights into the properties of amygdalin solvatomorphs: X-ray structures, intermolecular interactions, and transformations[J]. ACS Omega, 2022, 7(10): 8 906-8 918.
[6] 张清安, 范学辉, 武海波, 等. 苦杏仁多酚氧化酶的理化特性[J]. 食品科学, 2014, 35(15): 132-135.
ZHANG Q A, FAN X H, WU H B, et al. Physico-chemical properties of polyphenol oxidase from apricot kernel[J]. Food Science, 2014, 35(15): 132-135.
[7] 石宝明, 迟子涵. 自由基对动物的危害及消除技术研究进展[J]. 饲料工业, 2021, 42(9): 1-6.
SHI B M, CHI Z H. Research progress on harm of free radical to animals and its elimination technology[J]. Feed Industry, 2021, 42(9): 1-6.
[8] RENAUDIN X. Reactive oxygen species and DNA damage response in cancer[J]. International Review of Cell and Molecular Biology, 2021, 364: 139-161.
[9] FORRESTER S J, KIKUCHI D S, HERNANDES M S, et al. Reactive oxygen species in metabolic and inflammatory signaling[J]. Circulation Research, 2018, 122(6): 877-902.
[10] NISSANKA N, MORAES C T. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease[J]. FEBS Letters, 2018, 592(5): 728-742.
[11] RENDRA E, RIABOV V, MOSSEL D M, et al. Reactive oxygen species (ROS) in macrophage activation and function in diabetes[J]. Immunobiology, 2019, 224(2): 242-253.
[12] POT F, SANTI D, SPAGGIARI G, et al. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis[J]. International Journal of Molecular Sciences, 2019, 20(2): 351.
[13] MICHALICKOVD, BELOVIC M, ILIC N, et al. Comparison of polyphenol-enriched tomato juice and standard tomato juice for cardiovascular benefits in subjects with stage 1 hypertension: A randomized controlled study[J]. Plant Foods for Human Nutrition, 2019, 74(1): 122-127.
[14] 沈云方, 费莹, 王建琴, 等. 丹参多酚酸盐协同间充质干细胞自体移植治疗大鼠急性心肌损伤[J]. 中国现代应用药学, 2021, 38(8): 944-952.
SHEN Y F, FEI Y, WANG J Q, et al. Study on salvianolate combined with mesenchymal stem cells autotransplantation in the treatment of acute myocardial injury[J]. Chinese Journal of Modern Applied Pharmacy, 2021, 38(8): 944-952.
[15] NORATTO G, MARTINO H S, SIMBO S, et al. Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats[J]. The Journal of Nutritional Biochemistry, 2015, 26(6): 633-641.
[16] MILESE A, CALDER P C. Effects of citrus fruit juices and their bioactive components on inflammation and immunity: A narrative review[J]. Frontiers in Immunology, 2021, 12: 712608.
[17] OLSZEWSKA M A, GEDAS A, SIMES M. Antimicrobial polyphenol-rich extracts: Applications and limitations in the food industry[J]. Food Research International, 2020, 134: 109214.
[18] 吴永祥, 吴丽萍, 王卫东, 等. 桑白皮多酚的抗氧化和对UV辐射致成纤维细胞光老化的修复作用[J]. 食品与机械, 2018, 34(2): 15-18.
WU Y X, WU L P, WANG W D, et al. Antioxidant and UV-induced fibroblasts photoaging repair effects of polyphenol from Cortex Mori[J]. Food & Machinery, 2018, 34(2): 15-18.
[19] 张晓婷, 王满生, 邱浩楠, 等. 青叶苎麻叶多酚超声辅助提取工艺优化及抗氧化活性研究[J]. 食品与机械, 2020, 36(12): 152-158.
ZHANG X T, WANG M S, QIU H N, et al. Research on the optimization of ultrasonic assisted extraction technology and antioxidant activities of polyphenols extracted from green leaves ramie[J]. Food & Machinery, 2020, 36(12): 152-158.
[20] HAN B, NIU D, WANG T, et al. Ultrasonic-microwave assisted extraction of total triterpenoid acids from corni fructus and hypoglycemic and hypolipidemic activities of the extract in mice[J]. Food Function, 2020, 11(12): 10 709-10 723.
[21] 金旭东, 王俊淇, 曹朝清, 等. 循环超声提取羊栖菜中岩藻黄质的工艺研究[J]. 食品工业科技, 2021, 42(17): 170-178.
JIN X D, WANG J Q, CAO Z Q, et al. Study on the technology of extracting fucoxanthin from hizikia fusiforme by cyclic ultrasound[J]. Science and Technology of Food Industry, 2021, 42(17): 170-178.
[22] 葛水莲, 陈建中, 王有年. 桃果核木质化与过氧化物酶的关系[J]. 西北农业学报, 2009, 18(4): 272-275.
GE S L, CHEN J Z, WANG Y N. Relationship of peroxidase and endocarp lignification of peach fruit[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(4): 272-275.
[23] 韩晴. 桃果肉质地和粘离核性状两个关键PpPG基因的表达和调控关系分析[D]. 北京: 中国农业科学院, 2019: 1-27.
HAN Q. Expression and regulation relationship analysis of two key PpPG genes related to peach flesh texture and adhension traits[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019:1-27.
[24] DROGOUDI P, PANTELIDIS G E. Impact of genetic and climatic parameters on split-pit incidence in peach and nectarine[J]. Scientia Horticulturae, 2022, 297: 110970.
[25] 栾峰, 王连晶. 桃裂核原因探析与综合防治措施[J]. 果农之友, 2019(9): 36-37.
LUAN F, WANG L J. Analysis of cleft causes of peach and comprehensive control methods[J]. Fruit Growers Friend, 2019(9): 36-37.
[26] 牛良, 崔国朝, 曾文芳, 等. 桃果实裂核发生的原因及预防[J]. 果农之友, 2021(11): 45-46.
NIU L, CUI G Z, ZENG W F, et al. Causes and prevention ofpeach clefts[J]. Fruit Growers Friend, 2021(11): 45-46.
[27] 石秀梅, 雷激, 梁爱华, 等. 3种来源膳食纤维抗氧化特性比较[J]. 食品科技, 2013, 38(1): 71-75.
SHI X M, LEI J, LIANG A H, et al. Comparison of antioxidant properties among there dietary fibers[J]. Food Science and Technology, 2013, 38(1): 71-75.
[28] WANG Y G, XU Y, MA X Q, et al. Extraction, purification, characterization and antioxidant activities of polysaccharides from zizyphus jujuba cv. linzexiaozao[J]. International Journal of Biological Macromolecules, 2018, 118: 2 138-2 148.