Abstract
Objective: This study aimed to construct an enzymolysis and membrane separation method to improve the production efficiency of low molecular hyaluronic acid (HA). Methods: A continuous enzymolysis and membrane separation coupling reaction system was designed, which consisted of an enzyme biological reaction tank and a flat polyethersulfone ultrafiltration membrane separation module. By evaluating membrane flux, membrane contamination, hyaluronic acid concentration, and yield, the effects of various factors on the separation of low molecular HA in the enzyme-membrane coupling system were systematically investigated. The process parameters of the enzyme-membrane coupling reaction were further optimized through orthogonal experiments. Results: The optimal process parameters for the preparation of low molecular hyaluronic acid by enzyme-membrane coupling reaction system were a stirring speed of 200 r/min, transmembrane pressure of 0.15 mPa, enzymolysis time of 4.0 h, and enzyme dosage of 5 g/100 g. In this method, two low molecular hyaluronic acids with different molecular weights (Mr) can be quickly prepared and separated, the low molecular weight hyaluronic acid (LMW-HA) with Mw between 10 000~50 000 and the HA oligosaccharides (O-HA) with Mr <3 000 can be prepared rapidly by one-step approach. Both of these different molecular weights hyaluronic acid could scavenge DPPH and hydroxyl free radicals. Conclusion: The enzymolysis and membrane separation coupling method provides an efficient method for simultaneous and continuous production of LMW-HA and O-HA with different molecular weights and certain antioxidant properties.
Publication Date
1-30-2024
First Page
162
Last Page
170
DOI
10.13652/j.spjx.1003.5788.2023.80693
Recommended Citation
Wei, TENG; Junhui, LIU; Jinhong, WU; and Shutao, LIU
(2024)
"Continuous preparation of antioxidant low molecular weight hyaluronic acid by coupling of enzymolysis and membrane separation,"
Food and Machinery: Vol. 39:
Iss.
12, Article 26.
DOI: 10.13652/j.spjx.1003.5788.2023.80693
Available at:
https://www.ifoodmm.cn/journal/vol39/iss12/26
References
[1] FALLACARA A, BALDINI E, MANFREDINI S, et al. Hyaluronic acid in the third millennium[J]. Polymers, 2018, 10(7): 701-736.
[2] 王钊, 徐康, 王方, 等. 经口给予透明质酸的生理功能及其作用机制研究进展[J]. 食品科学, 2021, 42(23): 1-10.
WANG Z, XU K, WANG F, et al. Progress in research on physiological function and mechanism of oral hyaluronic acid[J]. Food Science, 2021, 42(23): 1-10.
[3] 卢方云, 吴瑀婕, 黄瑾, 等. 透明质酸的制备及其应用的研究进展[J]. 食品工业科技, 2022, 43(5): 440-447.
LUF Y, WU Y J, HUANG J, et al. Research progress on preparation and application of hyaluronic acid[J]. Science and Technology of Food Industry, 2022, 43(5): 440-447.
[4] 郭风仙, 高芃, 耿桂英, 等. 透明质酸钠的毒理学研究[J]. 中国生化药物杂志, 2010, 31(5): 316-319.
GUO F X, GAO P, GENG G Y, et al. Study on toxicology of sodium hyaluronate[J]. Chinese Journal of Biochemical and Pharmaceuticals, 2010, 31(5): 316-319.
[5] BECKER L C, BERGFELD W F, BELSITO D V, et al. Final report of the safety assessment of hyaluronic acid, potassium hyaluronate, and sodium hyaluronate[J]. International Journal of Toxicology, 2009, 28(4): 5-67.
[6] 张子辉. 透明质酸的制备及其对人结肠癌细胞TNF-α表达、迁移和转录组的影响[D]. 哈尔滨: 东北农业大学, 2021: 1-2.
ZHANG Z H. Preparation of hyaluronic acid and its effect on TNF-α expression, migration and transcriptome of human colon cancer cells[D]. Harbin: Northeast Agricultural University, 2021: 1-2.
[7] FERGUSON E L, ROBERTS J L, MOSELEY R, et al. Evaluation of the physical and biological properties of hyaluronan and hyaluronan fragments[J]. International Journal of Pharmaceutics, 2011, 420(1): 84-92.
[8] 李憬昱, 王凤山. 低分子质量和寡聚透明质酸制备、活性与应用研究进展[J]. 药物生物技术, 2019, 26(1): 64-68.
LI J Y, WANG F S. Research progress in the preparation methods, bioactivities and application of low molecular weight andoligomeric hyaluronic acid[J]. Pharmaceutical Biotechnology, 2019, 26(1): 64-68.
[9] 雷曦, 张蕊, 黄遵锡, 等. 透明质酸酶的研究进展[J]. 微生物学通报, 2021, 48(3): 882-895.
LEI X, ZHANG R, HUANG Z X, et al. Research progress of hyaluronidases[J]. Microbiology China, 2021, 48(3): 882-895.
[10] 李正阳, 卢智泉, 许芬, 等. 透明质酸纯化技术研究进展[J]. 轻工科技, 2016, 32(12): 31-39.
LI Z Y, LU Z Q, XU F, et al. Research progress of hyaluronic acid purification technology[J]. Light Industry Science and Technology, 2016, 32(12): 31-39.
[11] SU Z, LUO J, LI X, et al. Enzyme membrane reactors for production of oligosaccharides: A review on the interdependence between enzyme reaction and membrane separation[J]. Separation and Purification Technology, 2020, 243: 116840.
[12] KUROIWA T, IZUTA H, NABETANI H, et al. Selective and stable production of physiologically active chitosan oligosaccharides using an enzymatic membrane bioreactor[J]. Process Biochemistry, 2009, 44(3): 283-287.
[13] DAS R, SEN D, SARKAR A, et al. A comparative study on the production of galacto-oligosaccharide from whey permeate in recycle membrane reactor and in enzymatic batch reactor[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 806-816.
[14] 周海东, 倪晋仁, 黄文, 等. 膜技术分离透明质酸发酵液可行性研究[J]. 食品与发酵工业, 2005(11): 46-51.
ZHOU H D, NI J R, HUANG W, et al. Feasibility of separation of hyaluronic acid from fermentation broth of membrane technology[J]. Food and Fermentation Industries, 2005(11): 46-51.
[15] 陈万河, 储消和, 沈建, 等. 一种连续化生产低分子量透明质酸的方法及所得低分子量透明质酸和应用: CN111893151A[P]. 2020-11-06.
CHEN W H, CHU X H, SHEN J, et al. Method and application for continuous production of low molecular weight hyaluronic acid: CN111893151A[P]. 2020-11-06.
[16] 吴凌天, 卢成慧, 高华, 等. 一步法高效制备小分子硫酸软骨素和小分子透明质酸的方法: CN109988739B[P]. 2021-10-19.
WU L T, LU C H, GAO H, et al. One-step method for efficient preparation of low molecular weight chondroitin sulfate and hyaluronic acid: CN109988739B[P]. 2021-10-19.
[17] 苏子然. 酶膜反应器生产均一分子量的寡聚右旋糖酐[D]. 北京: 中国科学院大学, 2019.
SU Z R. Production of oligodextran by using an enzymatic membrane reactor[D]. Beijing: University of Chinese Academy of Sciences, 2019.
[18] 李敏, 侯增淼, 李晓颖, 等. 改良咔唑法测定重组人溶菌酶滴眼液中透明质酸钠的含量[J]. 化学分析计量, 2019, 28(1): 95-98.
LI M, HOU Z M, LI X Y, et al. Determination of sodiumhyaluronate in recombinant human lysozyme eye drops by modified carbazole method[J]. Chemical Analysis and Meterage, 2019, 28(1): 95-98.
[19] 王凤, 王凤舞, 崔加友, 等. 小分子量透明质酸片段的4种分子量检测方法的对比研究[J]. 海峡药学, 2019, 31(12): 89-93.
WANG F, WANG F W, CUI J Y, et al. A study of measurement of hyaluronic acid at low molecular range[J]. Strait Pharmaceutical Journal, 2019, 31(12): 89-93.
[20] TAKAGAKI K, MUNAKATA H, NAKAMURA W, et al. Ion-spray mass spectrometry for identification of the nonreducing terminal sugar of glycosaminoglycan[J]. Glycobiology, 1998, 8(7): 719-724.
[21] DOMON B, COSTELLO C E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates[J]. Glycoconjugate Journal, 1988, 5: 397-409.
[22] QIAO D, KE C, HU B, et al. Antioxidant activities of polysaccharides from Hyriopsiscumingii[J]. Carbohydrate Polymers, 2009, 78(2): 199-204.
[23] KE C, SUN L, QIAO D, et al. Antioxidant acitivity of low molecular weight hyaluronic acid[J]. Food and Chemical Toxicology, 2011, 49(10): 2 670-2 675.
[24] LUO J, MORTHENSEN S T, MEYER A S, et al. Filtration behavior of caseinglycomacropeptide (CGMP) in an enzymatic membrane reactor: Fouling control by membrane selection and threshold flux operation[J]. Journal of Membrane Science, 2014, 469: 127-139.
[25] LUO J, ZHU Z Z, DING L H, et al. Flux behavior in clarification of chicory juice by high-shear membrane filtration: Evidence for threshold flux[J]. Journal of Membrane Science, 2013, 435: 120-129.
[26] PLESZCZYNSKA M, SZCZODRAK J, ROGALSKI J, et al. Hydrolysis of dextran by Penicillium notatum dextranase and identification of final digestion products[J]. Mycological Research, 1997, 101(1): 69-72.
[27] BROWN S, KUBERAN B. Production of size-defined heparosan, heparan sulfate, and heparin oligosaccharides by enzymatic depolymerization[J]. Glycosaminoglycans: Chemistry and Biology, 2015, 1 229: 21-29.
[28] KAKIZAKI I, IBORI N, KOJIMA K, et al. Mechanism for the hydrolysis of hyaluronan oligosaccharides by bovine testicular hyaluronidase[J]. The FEBS Journal, 2010, 277(7): 1 776-1 786.
[29] KIM Y, MOTTE C A. The role of hyaluronan treatment in intestinal innate host defense[J]. Frontiers in Immunology, 2020, 11: 569.
[30] MAHONEY D J, APLIN R T, CALABRO A, et al. Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length[J]. Glycobiology, 2001, 11(12): 1 025-1 033.