Abstract
Ultrafine grinding is an advanced technology that can grind materials down to the micron or even nanometer level, with significant advantages of material savings, fast grinding speed, and uniform and fine powder particle size. Recently, it has gradually been applied in the pre-treatment of grain crops, which has positive significance for the production of food with good taste, a high nutritional material dissolution rate, and strong functionality. This review summarizes the classification, advantages, and disadvantages of 7 different types of ultrafine grinding technology. The effect of ultrafine grinding technology on the nutrients (protein, starch, fat, dietary fiber and phenolic compound) and specific physiological functions (regulating blood glucose, blood pressure, blood lipid, antioxidant, and reducing harmful substances) of grains were also discussed, for providing a theoretical basis for the future research and development of grain products.
Publication Date
1-30-2024
First Page
200
Last Page
207,213
DOI
10.13652/j.spjx.1003.5788.2023.80335
Recommended Citation
Lei, YANG; Yanju, JIA; Jingke, LIU; Qinghai, SHENG; and Yunting, WANG
(2024)
"Research progress on the effects of ultrafine grinding technology on nutrients and specific physiological functions of grain products,"
Food and Machinery: Vol. 39:
Iss.
12, Article 31.
DOI: 10.13652/j.spjx.1003.5788.2023.80335
Available at:
https://www.ifoodmm.cn/journal/vol39/iss12/31
References
[1] KAUR K D, JHA A, SABIKHI L, et al. Significance of coarse cereals in health and nutrition: A review[J]. Journal of Food Science and Technology, 2014, 51(8): 1 429-1 441.
[2] YANG T S, MA S, LIU J K, et al. Influences of four processing methods on main nutritional components of foxtail millet: A review[J]. Grain & Oil Science and Technology, 2022, 5(3): 156-165.
[3] WANG F, SUKMANOV V, ZENG J. Effect of ultrafine grinding on functional properties of soybean by-product[J]. Ukrainian Food Journal, 2019, 8(4): 687-698.
[4] YOUSIF E S, YASEEN A, ABDEL-FATAH A F, et al. Antioxidant and anticancer properties of nano and fermented-nano powders of wheat and rice by-products[J]. Discover Food, 2022, 2(1): 33.
[5] SUN C G, OLEH O, GAO X J, et al. Research and comparative analysis of the qualitative parameters of food powders produced from grain raw materials using an improved jet mill[J]. Technology Audit and Production Reserves, 2022, 6(3): 36-43.
[6] GUO X J, HE X M, DAI T T, et al. The physicochemical and pasting properties of purple corn flour ground by a novel low temperature impact mill[J]. Innovative Food Science & Emerging Technologies, 2021, 74: 102825.
[7] HAO Z H, ZHANG B W, GUO S S. Influence on physical and chemical properties of Mung bean starch by vibration superfine grinding time[J]. Editorial Office of Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(18): 317-324.
[8] 董弘旭. 球磨处理对小麦淀粉特性及面条品质的影响[D]. 郑州: 河南工业大学, 2021: 4-5.
DONG H X. Effect of ball-milling treatment on wheat starch properties and noodle quality[D]. Zhengzhou: Henan University of Technology, 2021: 4-5.
[9] GAO W J, CHEN F, WANG X, et al. Recent advances in processing food powders by using superfine grinding techniques: A review[J]. Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4): 2 222-2 255.
[10] CHEN T, ZHANG M, BHANDARI B, et al. Micronization and nanosizing of particles for an enhanced quality of food: A review[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(6): 993-1 001.
[11] 陈若辰. 高压射流磨制备燕麦全浆及对淀粉性质的影响研究[D]. 南昌: 南昌大学, 2020: 8-11.
CHEN R C. Preparation of whole-component oats slurry by industry-scale microfluidizer and its effect on starch properties[D]. Nanchang: Nanchang University, 2020: 8-11.
[12] MUTTAKIN S, KIM M S, LEE D U. Tailoring physicochemical and sensorial properties of defatted soybean flour using jet-milling technology[J]. Food Chemistry, 2015, 187: 106-111.
[13] 迟晓君, 吴凡, 卫晨, 等. 超微粉碎技术在特殊医学用途配方食品中的应用与展望[J]. 中国果菜, 2022, 42(1): 48-51.
CHI X J, WU F, WEI C, et al. Application and prospect of ultrafine grinding technology in formula food for special medical use[J]. China Fruit & Vegetable, 2022, 42(1): 48-51.
[14] 刘彩兵, 盛勇, 涂铭旌. 冲击粉碎米糠的成分变化研究[J]. 食品工业, 2004(5): 3-5.
LIU C B, SHENG Y, TU M J. Study on composition change of rice bran by impact comminution[J]. The Food Industry, 2004(5): 3-5.
[15] 骆兆娇. 豆渣纤维和蛋白的理化性质及改性研究[D]. 广州: 华南理工大学, 2021: 37.
LUO Z J. Physicochemical properties and modification of okara fiber and protein[D]. Guangzhou: South China University of Technology, 2021: 37.
[16] 柳双双. 超微粉碎对绿豆粉物性及其蛋白质功能特性的影响[D]. 哈尔滨: 哈尔滨商业大学, 2020: 29.
LIU S S. Effects of superfine grinding on physical properties and protein function of mungbean[D]. Harbin: Harbin University of Commerce, 2020: 29.
[17] XU Q L, ZHENG F Y, CAO X T, et al. Effects of airflow ultrafinegrinding on the physicochemical characteristics of tartary buckwheat powder[J]. Molecules, 2021, 26(19): 5 841.
[18] 郭武汉, 关二旗, 卞科. 超微粉碎处理对小麦面筋蛋白性质的影响[J]. 中国粮油学报, 2017, 32(5): 13-18.
GUO W H, GUAN E Q, BIAN K. Effects of superfine grinding treatment on the properties of wheat gluten[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(5): 13-18.
[19] 徐中岳, 罗志刚, 何小维. 湿法超微粉碎对木薯淀粉理化性质的影响[J]. 中国粉体技术, 2009, 15(6): 26-29.
XU Z Y, LUO Z G, HE X W. Effect of wet comminuting on physicochemical properties of cassava starch[J]. China Powder Science and Technology, 2009, 15(6): 26-29.
[20] 杨璐. 超微粉碎对燕麦粉品质影响及体外模拟消化研究[D]. 沈阳: 沈阳农业大学, 2019: 19.
YANG L. Effects of ultrafine pulverization on quality and in vitro simulated digestion of oat flour[D]. Shenyang: Shenyang Agricultural University, 2019: 19.
[21] HUANG Y W, SUN X X, GUO H M, et al. Changes in the thermal, pasting, morphological and structural characteristic of common buckwheat starch after ultrafine milling[J]. International Journal of Food Science & Technology, 2020, 56(6): 2 696-2 707.
[22] 刘晓飞, 吴浚滢, 赵香香, 等. 超微粉碎对4种米的理化特性及抗氧化能力的影响[J]. 粮食与油脂, 2023, 36(4): 26-31.
LIU X F, WU J Y, ZHAO X X, et al. Effect of ultrafine grinding on physicochemical properties and antioxidant capacity of 4 kinds of rice[J]. Cereals & Oils, 2023, 36(4): 26-31.
[23] 吴娜娜, 彭国泰, 谭斌, 等. 干法、半干法和湿法磨粉对糙米粉性质的影响[J]. 中国粮油学报, 2020, 35(1): 137-142.
WU N N, PENG G T, TAN B, et al. Properties of brown rice flour prepared from dry, semi-dry and wet milling[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(1): 137-142.
[24] 王士佳, 张璐, 葛善赢, 等. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响[J]. 食品安全质量检测学报, 2022, 13(20): 6 699-6 705.
WANG S J, ZHANG L, GE S Y, et al. Effects of 2 types of crushers on eating quality of ultrafine powder of chickpea sprout[J]. Journal of Food Safety and Quality, 2022, 13(20): 6 699-6 705.
[25] 许青莲, 岳天义, 张萍, 等. 超微粉碎对苦荞物化性质的影响[J]. 包装工程, 2020, 41(11): 25-32.
XU Q L, YUE T Y, ZHANG P, et al. Effects of superfine grinding on physicochemical properties of tartary buckwheat[J]. Packaging Engineering, 2020, 41(11): 25-32.
[26] 严旭东. 低温冲击磨制备糙米粉及其在无麸质面包中的应用[D]. 南昌: 南昌大学, 2021: 22-23.
YAN X D. Preparation of brown rice flour by low temperature impact mill and its application in gluten-free bread[D]. Nanchang: Nanchang University, 2021: 22-23.
[27] 牛潇潇, 王杰, 王宁, 等. 超微粉碎对马铃薯渣理化性质和微观结构的影响[J]. 中国粮油学报, 2022, 37(12): 84-91.
NIU X X, WANG J, WANG N, et al. Effect of superfine grinding on physicochemical properties and microstructure of potato residues[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 84-91.
[28] 李伦, 张晖, 王兴国, 等. 超微粉碎对脱脂米糠膳食纤维理化特性及组成成分的影响[J]. 中国油脂, 2009, 34(2): 56-59.
LI L, ZHANG H, WANG X G, et al. Effect of super micro-milling on the physicochemical properties and composition of dietary fibre prepared from defatted rice bran[J]. China Oils and Fats, 2009, 34(2): 56-59.
[29] SILVENTOINEN P, KORTEKANGAS A, ERCILI-CURA D, et al. Impact of ultra-fine milling and air classification on biochemical and techno-functional characteristics of wheat and rye bran[J]. Food Research International, 2021, 139: 109971.
[30] 黄晟, 朱科学, 钱海峰, 等. 超微及冷冻粉碎对麦麸膳食纤维理化性质的影响[J]. 食品科学, 2009, 30(15): 40-44.
HUANG S, ZHU K X, QIAN H F, et al. Effects of ultrafine comminution and freeze-grinding on physico-chemical properties of dietary fiber prepared from wheat bran[J]. Food Science, 2009, 30(15): 40-44.
[31] ZHAO G H, ZHANG R F, DONG L H, et al. Particle size of insoluble dietary fiber from rice bran affects its phenolic profile, bioaccessibility and functional properties[J]. LWT-Food Science and Technology, 2018, 87: 450-456.
[32] 卫子颜, 谢勇, 王朦朦, 等. 超微粉碎对米糠多酚的组成及抗氧化活性的影响[J]. 食品与发酵工业, 2022, 48(14): 138-144.
WEI Z Y, XIE Y, WANG M M, et al. Effect of ultrafine grinding on the composition and antioxidant activity of phenolic compounds in rice bran[J]. Food and Fermentation Industries, 2022, 48(14): 138-144.
[33] ZHANG Y K, ZHANG M L, GUO X Y, et al. Improving the adsorption characteristics and antioxidant activity of oat bran by superfine grinding[J]. Food Science & Nutrition, 2022, 11(1): 216-227.
[34] SONG L, SONG L S, SU H, et al. Superfine grinding affects particle size, chemical ingredients, and physicochemical properties of sprouting quinoa[J]. Cereal Chemistry, 2021, 99(3): 520-529.
[35] 曹英, 夏文, 李积华, 等. 超微粉碎处理对木薯淀粉结构及消化特性的影响[J]. 食品工业科技, 2019, 40(7): 30-34.
CAO Y, XIA W, LI J H, et al. Effect of micronization on the structure and digestibility of tapioca starch[J]. Science and Technology of Food Industry, 2019, 40(7): 30-34.
[36] 余青, 陈嘉浩, 王寅竹, 等. 超微粉碎处理对麦麸粉功能及结构特性的影响[J]. 粮食科技与经济, 2020, 45(2): 56-62.
YU Q, CHEN J H, WANG Y Z, et al. Effect of superfine grinding on functional and structural properties of wheat bran[J]. Food Science and Technology and Economy, 2020, 45(2): 56-62.
[37] OU S, KWOK K, LI Y, et al. In vitro study of possible role of dietary fiber in lowering postprandial serum glucose[J]. Journal of Agricultural and Food Chemistry, 2001, 49(2): 1 026-1 029.
[38] NIU L, GUO Q Q, XIAO J, et al. The effect of ball milling on the structure, physicochemical and functional properties of insoluble dietary fiber from three grain bran[J]. Food Research International, 2023, 163: 112263.
[39] LI L Y, LIU J F, ZHANG Y, et al. Qualitative and quantitative correlation of microstructural properties and in vitro glucose adsorption and diffusion behaviors of pea insoluble dietary fiber induced by ultrafine grinding[J]. Foods, 2022, 11(18): 2 814.
[40] 罗白玲. 超微粉碎对咖啡果皮不溶性膳食纤维加工和功能特性的影响研究[D]. 银川: 宁夏大学, 2020: 30-31.
LUO B L. Effect of ultrafine grinding on processing and functional properties of insoluble dietary fiber from coffee peel[D]. Yinchuan: Ningxia University, 2020: 30-31.
[41] 陈历水, 倪军, 周学晋, 等. 谷物中降血糖功能活性成分与其作用机理[J]. 农产品加工, 2017(1): 101-105, 109.
CHEN L S, NI J, ZHOU X J, et al. Recent progress of studies on hypoglycemic constituents in cereals and its action mechanism[J]. Farm Products Processing, 2017(1): 101-105, 109.
[42] WANG M, CHEN X H, DONG L C, et al. Modification of pea dietary fiber by ultrafine grinding and hypoglycemic effect in diabetes mellitus mice[J]. Journal of Food Science, 2021, 86(4): 1 273-1 282.
[43] AYUA E O, NKHATA S G, NAMAUMBO S J, et al. Polyphenolic inhibition of enterocytic starch digestion enzymes and glucose transporters for managing type 2 diabetes may be reduced in food systems[J]. Heliyon, 2021, 7(2): e6245.
[44] CHEN J L, GAO D X, YANG L T, et al. Effect of microfluidization process on the functional properties of insoluble dietary fiber[J]. Food Research International, 2013, 54(2): 1 821-1 827.
[45] 赵萌萌, 张文刚, 党斌, 等. 超微粉碎对青稞麸皮粉多酚组成及抗氧化活性的影响[J]. 农业工程学报, 2020, 36(15): 291-298.
ZHAO M M, ZHANG W G, DANG B, et al. Effects of ultramicro-crushing on composition of polyphenols and antioxidant activity of barley bran powder[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(15): 291-298.
[46] 李菁, 吴聪聪, 叶沁, 等. 不同处理方法对豆渣膳食纤维结构和降血糖性质的影响[J]. 食品与发酵工业, 2021, 47(15): 178-184.
LI J, WU C C, YE Q, et al. Effect of different treatments on structure and hypoglycemic properties of okara dietary fibers[J]. Food and Fermentation Industries, 2021, 47(15): 178-184.
[47] 厉佳怡, 王红磊, 杨倩倩, 等. 豌豆超微粉碎膳食纤维对糖尿病小鼠肠道菌群及其代谢产物的影响[J]. 食品科学, 2022, 43(17): 174-181.
LI J Y, WANG H L, YANG Q Q, et al. Effects of ultrafine ground pea dietary fiber on intestinal flora and metabolites in diabetic mice[J]. Food Science, 2022, 43(17): 174-181.
[48] NEWSHOLME P, CRUZAT V F, KEANE K N, et al. Molecular mechanisms of ROS production and oxidative stress in diabetes[J]. The Biochemical Journal, 2016, 473(24): 4 527-4 550.
[49] ROSA N N, BARRON C, GAIANI C, et al. Ultra-fine grinding increases the antioxidant capacity of wheat bran[J]. Journal of Cereal Science, 2013, 57(1): 84-90.
[50] LI G H, GUO W Y, GAO X L, et al. Effect of superfine grinding on physicochemical and antioxidant properties of soybean residue powder[J]. Food Science & Nutrition, 2020, 8(2): 1 208-1 214.
[51] BALLESTER-SNCHEZ J, FERNNDEZ-ESPINAR M T, HAROS C M. Isolation of red quinoa fibre by wet and dry milling and application as a potential functional bakery ingredient[J]. Food Hydrocolloids, 2020, 101: 105513.
[52] 滕硕. 超微粉碎对甜杏仁红衣理化性质的影响及工艺研究[D]. 乌鲁木齐: 新疆农业大学, 2012: 74-75.
TENG S. Ultra-fine pulverization for sweet almond skin effect on physicochemical properties and technology research[D]. Wulumuqi: Xinjiang Agriculture University, 2012: 74-75.
[53] FRIEDMAN S M, BUTT R M, FRIEDMAN C L. Cation shifts and blood pressure regulation in the dog[J]. American Journal of Physiology, 1957, 190(3): 507-512.
[54] 王佳欣, 黎阳, 李再贵, 等. 不同粒径对青稞麸皮结构与功能特性及冲调稳定性的影响[J]. 食品科学, 2022, 43(3): 54-61.
WANG J X, LI Y, LI Z G, et al. Effects of different particle sizes on the structure, functional properties and reconstitution stability of highland barley bran[J]. Food Science, 2022, 43(3): 54-61.
[55] 苏珏, 席路, 杨武, 等. 四种玉米皮膳食纤维的组分对其吸附等功能性质影响的研究[J]. 食品工业, 2012, 33(7): 81-84.
SU Y, XI L, YANG W, et al. The effects of components of four kinds of dietary fiber made from corn bran on its property[J]. The Food Industry, 2012, 33(7): 81-84.
[56] YANG T, YAN H L, TANG C H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara[J]. Food Hydrocolloids, 2020, 111: 106386.
[57] SUN X B, ZHANG Y W, LI J, et al. Effects of particle size on physicochemical and functional properties of superfine black kidney bean (Phaseolus vulgaris L.) powder[J]. Peer J, 2019, 7: e6369.
[58] KAHLON T S, CHOW F I. In vitro binding of bile acids by rice bran, oat bran, wheat bran, and corn bran[J]. Cereal Chemistry, 2000, 77(4): 518-521.
[59] 牛潇潇, 梁亮, 王宁, 等. 超微粉碎及不同粒度对马铃薯渣功能特性的影响[J]. 中国粮油学报, 2022, 37(1): 37-45.
NIU X X, LIANG L, WANG N, et al. Effects of superfine grinding and different particle sizes on functional characteristics of potato residues[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(1): 37-45.
[60] 王秋. 谷物杂粮超微混合粉营养、功能特性及其应用的研究[D]. 哈尔滨: 哈尔滨商业大学, 2015: 52-55.
WANG Q. Study on the nutrition, features and application of multigrain superfine power[D]. Harbin: Harbin University of Commerce, 2015: 52-55.
[61] 任顺成, 王玮. 超微粉碎对小麦麸皮功能特性的影响研究[J]. 粮食与油脂, 2016, 29(12): 36-41.
REN S C, WANG W. Effect of superfine grinding on functional properties of wheat bran[J]. Cereals & Oils, 2016, 29(12): 36-41.
[62] 张媛, 宋倩, 梁叶星, 等. 超微粉碎对脱脂糯小米米糠的抗氧化性和肠道益生性的影响[J]. 中国食品学报, 2016, 16(9): 53-59.
ZHANG Y, SONG Q, LIANG Y X, et al. Effect of ultrafine comminution on anti-oxidation property and prebiotic function of defatted millet bran[J]. Journal of Chinese Institute of Food Science and Technology, 2016, 16(9): 53-59.
[63] 王博, 姚轶俊, 李枝芳, 等. 超微粉碎对4种杂粮粉理化性质及功能特性的影响[J]. 食品科学, 2020, 41(19): 111-117.
WANG B, YAO Y J, LI Z F, et al. Effect of superfine grinding on physicochemical properties and functional properties of four kinds of coarse cereals[J]. Food Science, 2020, 41(19): 111-117.