•  
  •  
 

Abstract

Objective: To solve the problems of low accuracy, low efficiency, and strong manual dependence in existing milk protein detection methods. Methods: Based on hyperspectral imaging systems, proposed a combination of improved whale algorithm and Elman neural network for rapid and non-destructive detection of milk protein content. Optimized the whale algorithm through three aspects (chaotic mapping, adaptive convergence factor, and adaptive weight) to improve search accuracy, and optimized the Elman neural network parameters (weights and thresholds) after optimization. Analyzed the performance of the proposed non-destructive testing method through experimental analysis. Results: Compared with conventional detection methods, proposed method was optimal for multiple performance indicators in non-destructive testing of milk protein. The experimental method was optimal in multiple performance indicators for non-destructive testing of milk protein, with determination coefficient of 0.997 3, the root mean square error of 0.000 3, and the detection time of 1.56 seconds. Conclusion: The experimental method has high detection accuracy and efficiency.

Publication Date

1-30-2024

First Page

55

Last Page

59,116

DOI

10.13652/j.spjx.1003.5788.2023.60092

References

[1] 白丽萍, 王伟, 王强, 等. 近红外光谱快速检测葡萄酒品质[J]. 浙江农业科学, 2021, 62(2): 389-391, 400. BAI L P, WANG W, WANG Q, et al. Rapid detection of wine quality by near-infrared spectroscopy[J]. Agricultural Science, 2021, 62(2): 389-391, 400.
[2] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126. XIANG H Y, XUE Z, LENG C J, et al. Experimental study on visual inspection of apple quality based on Halcon[J]. Food & Machinery, 2016, 32(10): 123-126.
[3] 朱晓琳. 基于高光谱成像的水果品质及木材含水量评估方法[D]. 无锡: 江南大学, 2020: 7-8. ZHU X L. Method for evaluating fruit quality and wood moisture content based on hyperspectral imaging[D]. Wuxi: Jiangnan University, 2020: 1-10.
[4] 黄钰. 纯牛奶中常用防腐剂的高光谱快速检测方法研究[D]. 哈尔滨: 东北农业大学, 2020: 9-10. HUANG Y. Research on hyperspectral rapid detection method for common preservatives in pure milk[D]. Harbin: Northeast Agricultural University, 2020: 9-10.
[5] 刘美辰, 薛河儒, 刘江平, 等. 牛奶蛋白质含量的SSA-SVM 高光谱预测模型[J]. 光谱学与光谱分析, 2022, 42(5): 1 601-1 606. LIU M C, XUE H R, LIU J P, et al. SSA-SVM hyperspectral prediction model for milk protein content[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1 601-1 606.
[6] 胡鹏伟, 刘江平, 薛河儒, 等. BP神经网络结合变量选择方法在牛奶蛋白质含量检测中的应用[J]. 光电子·激光, 2022, 33(1): 23-29. HU W P, LIU J P, XUE H R, et al. The application of BP neural network combined with variable selection method in the detection of milk protein content[J]. Optoelectron·Laser, 2022, 33(1): 23-29.
[7] 肖仕杰, 王巧华, 李春芳, 等. 傅里叶变换中红外光谱的牛奶品质无损检测分级[J]. 光谱学与光谱分析, 2022, 42(4): 1 243-1 249. XIAO S J, WANG Q H, LI C F, et al. Non destructive testing and grading of milk quality using Fouriertransform mid infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2022, 42(4): 1 243-1 249.
[8] 王丰霞, 冯骁骄. 凯氏定氮法检测牛奶中蛋白质含量的不确定度评定[J]. 粮食加工, 2022, 47(4): 127-129. WANG F X, FENG X J. Evaluation of uncertainty in the determination of protein content in milk by Kjeldahl nitrogen method[J]. Grain Processing, 2022, 47(4): 127-129.
[9] 曾祥燕, 赵良忠, 孙文兵, 等. 基于PCA和BP神经网络的葡萄酒品质预测模型[J]. 食品与机械, 2014, 30(1): 40-44. ZENG X Y, ZHAO L Z, SUN W B, et al. A wine quality prediction model based on PCA and BP neural network[J]. Food & Machinery, 2014, 30(1): 40-44.
[10] 李琴, 朱家明, 郎红, 等. 基于带 RBF核的 SVM 模型对红酒品质的精准分类[J]. 湖北大学学报(自然科学版), 2021, 43(4): 417-422. LI Q, ZHU J M, LANG H, et al. Accurate classification of red wine quality based on SVM model with RBF kernel[J]. Journal of Hubei University (Natural Science Edition), 2021, 43(4): 417-422.
[11] 周红标, 柏小颖, 卜峰, 等. 基于模糊递归小波神经网络的葡萄酒品质预测[J]. 计算机测量与及控制, 2017, 25(4): 21-24. ZHOU H B, BAI X Y, BU F, et al. Wine quality prediction based on fuzzy recurrent wavelet neural network[J]. Computer Measurement and Control, 2017, 25(4): 21-24.
[12] 刘云, 杨建滨, 王传旭. 基于卷积神经网络的苹果缺陷检测算法[J]. 电子测量技术, 2017, 40(3): 108-112. LIU Y, YANG J B, WANG C X. Apple defect detection algorithm based on convolutional neural network[J]. Electronic Measurement Technology, 2017, 40(3): 108-112.
[13] 周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技, 2021, 38(5): 388-394. ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Technology, 2021, 38(5): 388-394.
[14] 杨双艳, 杨紫刚, 张四伟, 等. 基于近红外光谱和PSO-SVM算法的烟叶自动分级方法[J]. 贵州农业科学, 2018, 46(12): 141-144. YANG S Y, YANG Z G, ZHANG S W, et al. Automatic tobacco grading method based on near infrared spectroscopy and PSO-SVM algorithm[J]. Guizhou Agricultural Sciences, 2018, 46(12): 141-144.
[15] 王阳阳, 黄勋, 陈浩, 等. 基于同态滤波和改进K-means的苹果分级算法研究[J]. 食品与机械, 2019, 35(12): 47-51, 112. WANG Y Y, HUANG X, CHEN H, et al. Apple grading algorithm based on homomorphic filtering and improved K-means[J]. Food & Machinery, 2019, 35(12): 47-51, 112.
[16] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110. WANG L Y, ZHANG Y, SHEN Q, et al. Automatic apple classification method based on improved LeNet-5[J]. Chinese Journal of Agricultural Mechanochemistry, 2020, 41(7): 105-110.
[17] 于蒙, 李雄, 杨海潮, 等. 基于图像识别的苹果的等级分级研究[J]. 自动化与仪表, 2019, 34(7): 39-43. YU M, LI X, YANG H C, et al. Apple grading based on image recognition[J]. Automation and Instrumentation, 2019, 34(7): 39-43.
[18] 刘英, 周晓林, 胡忠康, 等. 基于优化卷积神经网络的木材缺陷检测[J]. 林业工程学报, 2019, 4(1): 115-120. LIU Y, ZHOU X L, HU Z K, et al. Wood defect detection based on optimized convolutional neural network[J]. Journal of Forestry Engineering, 2019, 4(1): 115-120.
[19] 王泽霞, 陈革, 陈振中. 基于改进卷积神经网络的化纤丝饼表面缺陷识别[J]. 纺织学报, 2020, 41(4): 115-120. WANG Z X, CHEN G, CHEN Z Z. Surface defect recognition of chemical fiber cake based on improved convolutional neural network[J]. Journal of Textile Research, 2020, 41(4): 115-120.
[20] 习鸿杰, 宋利君, 邓玉明, 等. 基于BP神经网络的UHT纯牛奶包装货架期预测[J/OL]. 食品工业科技. (2023-07-26) [2023-08-19]. https://doi.org/10.13386/j.issn1002-0306.2023020107. XI H J, SONG L J, DENG Y M, et al. Shelf life prediction of UHT pure milk packaging based on BP neural network[J/OL]. Food Industry Technology. (2023-07-26) [2023-08-19]. https://doi.org/10.13386/j.issn1002-03 06.2023020107.
[21] BONAH E, HUANG X, YI R, et al. Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model[J]. Infrared Physics & Technology, 2020, 105(3): 1-11.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.