Abstract
Objective: This study aimed to preserve the flavor of Xiangpai brined beef and prolong its shelf life. Methods: High-throughput sequencing was performed in Xiangpai brined beef samples with different storage time (0, 4, 8, 12, 16 d). Results: A total of 1 116 813 effective gene sequence bands were obtained, with an average of 74 454 bands per sample. Alpha diversity analysis showed that LNR8d had the highest bacterial abundance, while LNR4d had the lowest bacterial abundance. The results showed that during storage, Firmicutes, Proteobacteria and Cyanobacteria were dominant bacteria in the 15 brined beef samples. Bacillus was the dominant bacterium in LNR0d samples, while the dominant bacterium in LNR4d samples was Macrococcus. The dominant bacterium in LNR8d samples was Enterobacter. The dominant bacteria in LNR12d samples also belonged to Bacillus, and the dominant bacterium in LNR16d samples was Unidentified chloroplast. PCA analysis showed that the distance between the 15 samples within the group was large, indicating that the microbiota diversity of the 15 samples varied greatly. LEfSe analysis showed that in LNR4d ~ LNR16d samples, the bacteria with the largest contribution at the genus level were Macrococcus, Microbacillus and Lactobacillus. Conclusion: This study revealed the diversity of bacteria in the storage process of Xiangpai braised beef and explored the changes of bacteria and its dominant bacteria genus during the storage process.
Publication Date
4-25-2023
First Page
113
Last Page
119,197
DOI
10.13652/j.spjx.1003.5788.2022.80688
Recommended Citation
Li-na, CHE; Liang-zhong, ZHAO; and Xiao-jie, ZHOU
(2023)
"Bacterial diversity analysis of Xiangpai brined beef based on high-throughput sequencing,"
Food and Machinery: Vol. 39:
Iss.
2, Article 19.
DOI: 10.13652/j.spjx.1003.5788.2022.80688
Available at:
https://www.ifoodmm.cn/journal/vol39/iss2/19
References
[1] 赵良忠, 陈浩, 周小虎. 卤制食品冷却装置及卤制食品冷却方法: CN104273638A[P]. 2015-01-14.
[2] 赵良忠, 陈浩, 周小虎. 卤制食品冷却装置: ZL204207037U[P]. 2015-03-18.
[3] 李海涛, 赵良忠, 范柳, 等. 休闲豆干真空脉冲卤制工艺优化[J]. 食品工业科技, 2018, 39(17): 173-179.
[4] JORDAN E, EGAN J, DULLEA C, et al. Salmonella surveillance in raw and cooked meat and meat products in the Republic of Ireland from 2002 to 2004[J]. International Journal of Food Micro Biology, 2006, 112(1): 66-70.
[5] 屠明亮. 循环卤煮对卤牛肉、卤汤品质特性及风味物质变化规律的影响[D]. 扬州: 扬州大学, 2021: 43.
[6] 潘晓倩, 周慧敏, 李素, 等. 卤牛肉贮藏过程中气味活性化合物变化及异味分析[J]. 食品科学, 2021, 42(22): 240-248.
[7] 邹云鹤. 超声波辅助煮制对酱卤牛肉品质的影响研究[D]. 南京: 南京农业大学, 2018: 35.
[8] 杨爽, 杨萍, 徐琳, 等. 超高压处理协同低温贮藏对卤牛肉品质的影响[J]. 食品工业科技, 2021, 42(21): 334-343.
[9] 伍涛, 彭希林, 赵良忠, 等. 湘派豆干及卤汁在卤制过程中的变化规律[J]. 食品与发酵工业, 2021, 47(19): 146-154.
[10] 杨成, 李晶, 徐悦, 等. 利用4种方法对猪肉、牛肉、羊肉DNA进行提取比较[J]. 食品工程, 2018(3): 51-53, 61.
[11] FADROSH D W, MA B, GAJER P, et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform[J]. Microbiome, 2014, 2(1): 3-7.
[12] QIU Z C, LI N Y, LU X M, et al. Characterization of microbial community structure and metabolic potential using Illumina MiSeq platform during the black garlic processing[J]. Food Research International, 2018, 106(1): 428-438.
[13] MEILING Z, MENGHUI Z, CHENHONG Z, et al. Pattern extraction of structural responses of gut microbiota to rotavirus infection via multivariate statistical analysis of clone library data[J]. FEMS Microbiology Ecology, 2009, 70(2): 21-29.
[14] 孙丹丹, 卢士玲, 李开雄, 等. 贮藏温度对冷鲜羊肉微生物菌群生长变化的影响[J]. 食品工业科技, 2017, 38(4): 327-331, 341.
[15] HUANG W, XIE J. Characterization of the volatiles and quality of hybrid grouper and their relationship to changes of microbial community during storage at 4 ℃[J]. Molecules, 2020, 25(4): 818.
[16] 赵萍, 金文刚, 兰阿峰, 等. 基于Illumina MiSeq测序技术分析大鲵肉冷藏过程中微生物菌群演替规律[J]. 食品科学, 2022, 43(20): 172-182.
[17] 王俊钢, 李宇辉, 刘成江, 等. 新疆哈萨克族传统风干肉中细菌多样性分析及安全评价[J]. 中国食品学报, 2021, 21(11): 209-218.
[18] 杜瑞, 王柏辉, 罗玉龙, 等. 应用Illumina MiSeq测序技术比较传统发酵乳、肉食品中细菌多样性[J]. 中国食品学报, 2021, 21(2): 269-277.
[19] 黄郑朝, 宋莲军, 黄现青, 等. 基于高通量测序对中国不同区域传统发酵香肠细菌多样性的研究[J]. 食品与发酵工业, 2019, 45(18): 15-21.
[20] 邓祥宜, 李继伟, 何立超, 等. 宣恩火腿发酵过程中表面微生物群落演替规律[J]. 食品与发酵工业, 2021, 47(7): 34-42.
[21] 王馨蕊, 史巧, 刘毕琴, 等. 诺邓火腿加工过程中细菌群落的动态变化[J]. 食品工业科技, 2021, 42(2): 83-89, 98.
[22] 马岩石, 姜明, 李慧, 等. 基于高通量测序技术分析东北豆酱的微生物多样性[J]. 食品工业科技, 2020, 41(12): 100-105.
[23] 李春生, 王悦齐, 李来好, 等. 传统鱼露发酵过程中细菌群落演替及对其挥发性风味形成的影响分析[J]. 食品科学, 2018, 39(24): 85-92.
[24] 毛海萍, 袁开, 金仁耀, 等. 基于传统分离培养和高通量测序分析市售咸鳓鱼中微生物多样性[J]. 食品研究与开发, 2019, 40(21): 193-201.
[25] 李伟程, 侯强川, 于洁, 等. 传统发酵乳制品中微生物多样性研究[J]. 食品工业科技, 2018, 39(1): 131-136.
[26] 宋思家, 黄子彧, 林莹莹, 等. 基于Illumina MiSeq高通量测序技术分析不同保质期鸡蛋干的微生物群落多样性[J]. 食品与发酵工业, 2020, 46(24): 24-30.
[27] 马俪珍, 南庆贤, 戴瑞彤. 冷却猪肉中腐败菌的分离、初步鉴定与初始菌相分析[J]. 天津农学院学报, 2005, 12(3): 39-43.
[28] BLAIOTTA G, PENNACCHIA C, VILLANI F, et al. Diversity and dynamics of communities of coagulase-negative staphylococci in traditional fermented sausages[J]. Journal of Applied Microbiology, 2004, 97(2): 271-284.
[29] OWUSU-KWARTENG J, TANO-DEBRAH K, AKABANDA F, et al. Technological properties and probiotic potential of Lactobacillus fermentum strains isolated from West African fermented millet dough[J]. BMC Microbiology, 2015, 15(1): 261.
[30] SHAH N, PATERL A, AMBALAM P, et al. Determination of an antimicrobial activity of Weissella confuse, Lactobacillus fermentum, and Lactobacillus plantarum against clinical pathogenic strains of Escherichia coli and Staphylococcus aureus in co-culture[J]. Annals of Microbiology, 2016, 66(3): 1 137-1 143.
[31] 李大宇. 不同杀菌工艺和包装技术对酱牛肉贮藏品质的影响试验研究[D]. 长春: 吉林大学, 2020: 18.
[32] 史文艳, 孙震. ε-聚赖氨酸盐酸盐与Nisin对蜡状芽孢杆菌的协同作用及机理[J]. 食品与机械, 2019, 35(3): 15-19, 103.
[33] 程琴, 黄庶识, 陈丽梅. 芽孢杆菌孢子萌发机理的研究进展[J]. 生命科学, 2010, 22(9): 878-885.