•  
  •  
 

Corresponding Author(s)

李晓晖(1976—),女,上海海洋大学副教授,博士。E-mail:xhli@shou.edu.cn

Abstract

In this review, the mechanism and characteristics of antioxidant peptides prepared by novel processing technologies such as microwave, ohmic heating, subcritical water, ultrasonic wave, high static pressure and pulsed electric field were summarized. The process and effectiveness of the implementation of these novel processing technologies for protein feedstock pretreatment and auxiliary enzymatic preparation were analyzed, and the advantages and challenges of each novel processing technology for the production of antioxidant peptides were discussed.

Publication Date

4-25-2023

First Page

9

Last Page

16

DOI

10.13652/j.spjx.1003.5788.2022.80383

References

[1] BASHIR K M I, PARK Y, AN J H, et al. Antioxidant properties of scomber japonicus hydrolysates prepared by enzymatic hydrolysis[J]. Journal of Aquatic Food Product Technology, 2018, 27(1): 107-121.
[2] HEMA G S, JOSHY C G, SHYNI K, et al. Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization[J]. Journal of Food Science and Technology, 2017, 54(2): 488-496.
[3] 张强, 李伟华. 抗氧化肽的研究现状[J]. 食品与发酵工业, 2021, 47(2): 298-304.
[4] 齐兴宇, 闫小娟, 张海悦. 卵白蛋白肽复合酶法制备工艺优化及解酒效果[J]. 食品与机械, 2022, 38(5): 166-172.
[5] OZYURT G, BOGA M, UAR Y, et al. Chemical, bioactive properties and in vitro digestibility of spray-dried fish silages: Comparison of two discard fish (Equulites klunzingeri and Carassius gibelio) silages[J]. Aquaculture Nutrition, 2018, 24(3): 998-1 005.
[6] 孙跃如, 林桐, 赵吉春, 等. 谷物源抗氧化肽: 制备、构效及应用[J]. 食品与发酵工业, 2022, 48(10): 299-305.
[7] 宫田娇, 付源, 李冰, 等. 微生物发酵法脱除柞蚕蛹蛋白臭味和制备抗氧化肽的工艺研究[J]. 北方蚕业, 2021, 42(1): 19-27.
[8] RAVESCHOT C, CUDENEC B, COUTTE F, et al. Production of bioactive peptides by lactobacillus species: From gene to application[J]. Frontiers in Microbiology, 2018, 9: 2 354.
[9] 阮晓慧. 核桃粕分离蛋白的酶解产物功能特性研究[D]. 西安: 陕西师范大学, 2017: 5-7.
[10] 宋雪梅. 玉米源肽对肝细胞酒精性损伤的保护作用[D]. 长春: 吉林大学, 2018: 16-35.
[11] JIN H, XU H, LI Y, et al. Preparation and evaluation of peptides with potential antioxidant activity by microwave assisted enzymatic hydrolysis of collagen from sea cucumber acaudina molpadioides obtained from Zhejiang province in China[J]. Marine Drugs, 2019, 17(3): 169.
[12] LI Y, LI J, LIN S, et al. Preparation of antioxidant peptide by microwave-assisted hydrolysis of collagen and its protective effect against H2O2-induced damage of RAW264.7 cells[J]. Marine Drugs, 2019, 17(11): 642.
[13] CHEN Z, LI Y, LIN S, et al. Development of continuous microwave-assisted protein digestion with immobilized enzyme[J]. Biochemical and Biophysical Research Communications, 2014, 445(2): 491-496.
[14] HUANG Y, RUAN G, QIN Z, et al. Antioxidant activity measurement and potential antioxidant peptides exploration from hydrolysates of novel continuous microwave-assisted enzymolysis of the scomberomorus niphonius protein[J]. Food Chemistry, 2017, 223: 89-95.
[15] KETNAWA S, LICEAGA A M. Effect of microwave treatments on antioxidant activity and antigenicity of fish frame protein hydrolysates[J]. Food and Bioprocess Technology, 2017, 10(3): 582-591.
[16] LI X W, WILLY H J, CHANG S, et al. Selective laser melting of stainless steel and alumina composite: Experimental and simulation studies on processing parameters, microstructure and mechanical properties[J]. Material & Design, 2018, 145: 1-10.
[17] SILVA V L M, SANTOS L M N B, SILVA A M S. Ohmic heating: An emerging concept in organic synthesis[J]. Chemistry-A European Journal, 2017, 23(33): 7 853-7 865.
[18] COSTA N R, CAPPATO L P, FERREIRA M V S, et al. Ohmic heating: A potential technology for sweet whey processing[J]. Food Research International, 2018, 106: 771-779.
[19] JESUS M S, BALLESTEROS L F, PEREIRA R N, et al. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity[J]. Food Chemistry, 2020, 316: 126298.
[20] COELHO M C, RIBEIRO T B, OLIVEIRA C, et al. In vitro gastrointestinal digestion impact on the bioaccessibility and antioxidant capacity of bioactive compounds from tomato flours obtained after conventional and ohmic heating extraction[J]. Foods, 2021, 10(3): 554.
[21] 杨诗奇, 张晨, 李超, 等. 亚临界水在生物大分子中的应用进展[J]. 食品工业, 2020, 41(6): 262-264.
[22] 颜征, 张海晖, 李亚群, 等. 莲子壳多酚的抗氧化活性和稳定性[J]. 中国食品学报, 2019, 19(12): 89-95.
[23] 吴昊, 杨玉, 王悦庆, 等. 亚临界水萃取甘草残渣共提取甘草总黄酮及低聚糖[J]. 南京工业大学学报(自然科学版), 2021, 43(1): 25-31.
[24] AHMED R, CHUN B. Subcritical water hydrolysis for the production of bioactive peptides from tuna skin collagen[J]. Journal of Supercritical Fluids, 2018, 141: 88-96.
[25] ASADUZZAMAN A K M, CHUN B. Recovery of functional materials with thermally stable antioxidative properties in squid muscle hydrolyzates by subcritical water[J]. Journal of Food Science and Technology, 2015, 52(2): 793-802.
[26] 涂宗财, 尧思华, 王辉, 等. 亚临界水对鸭血浆蛋白抗氧化活性的影响[J]. 食品与发酵工业, 2014, 40(2): 111-115.
[27] LVAREZ C, TIWARI B K, RENDUELES M, et al. Use of response surface methodology to describe the effect of time and temperature on the production of decolored, antioxidant and functional peptides from porcine hemoglobin by sub-critical water hydrolysis[J]. LWT, 2016, 73: 280-289.
[28] CHUN B S, LEE S C, HO T C, et al. Subcritical water hydrolysis of comb pen shell (atrina pectinata) edible parts to produce high-value amino acid products[J]. Marine Drugs, 2022, 20(6): 357.
[29] JUNG K, CHOI Y, CHUN J, et al. Effects of concentration and reaction time of trypsin, pepsin, and chymotrypsin on the hydrolysis efficiency of porcine placenta[J]. Korean Journal for Food Science of Animal Resources, 2014, 34(2): 151-157.
[30] LACHOS-PEREZ D, BROWN A B, MUDHOO A, et al. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: A critical review[J]. Biofuel Research Journal, 2017, 4(2): 611-626.
[31] 李文欣, 李海静, 张立娟, 等. 超声辅助酶法制备海参性腺ACE抑制肽及其模拟体内消化稳定性的研究[J]. 食品研究与开发, 2021, 42(16): 83-91.
[32] 戢得蓉, 刘松奇, 熊坤艳, 等. 雪莲果叶总黄酮超声波辅助酶法提取工艺优化及抗氧化活性研究[J]. 食品与机械, 2021, 37(2): 179-185.
[33] YU H, TAN F. Effect of ultrasonic pretreatment on the antioxidant properties of porcine liver protein hydrolysates[J]. International Journal of Food Science & Technology, 2017, 52(6): 1 392-1 399.
[34] 梁秋芳, 张熙, 任晓锋, 等. 扫频超声处理时间对β-乳球蛋白酶解制备多肽抗氧化活性的影响[J]. 中国食品学报, 2020, 20(4): 33-41.
[35] GUERRA-ALMONACID C M, TORRUCO-UCO J G, MURILL-ARANGO W, et al. Effect of ultrasound pretreatment on the antioxidant capacity and antihypertensive activity of bioactive peptides obtained from the protein hydrolysates of Erythrina edulis[J]. Emirates Journal of Food and Agriculture, 2019, 31(4): 288-296.
[36] LIANG Q F, REN X F, MA H L, et al. Effect of Low-Frequency ultrasonic-assisted enzymolysis on the physicochemical and antioxidant properties of corn protein hydrolysates[J]. Journal of Food Quality, 2017, 2 017: 2784146.
[37] WANG Y, WANG Z, HANDA C L, et al. Effects of ultrasound pre-treatment on the structure of β-conglycinin and glycinin and the antioxidant activity of their hydrolysates[J]. Food Chemistry, 2017, 218: 165-172.
[38] 杨雪, 李云亮, 王禹程, 等. 可溶化结合超声预处理对酪蛋白酶解产物ACE抑制活性的影响[J]. 中国食品学报, 2019, 19(7): 146-152.
[39] 王晨笑, 尹浩, 王丹凤, 等. 高静压处理对植物蛋白消化性的影响[J]. 保鲜与加工, 2020, 20(4): 230-235.
[40] 熊新星, 周兵, 张璐瑶, 等. 气体结合高静压对干锅藕片贮藏期品质及微生物的影响[J]. 食品科学, 2017, 38(9): 220-224.
[41] 曹妍妍, 杨傅佳, 吴靖娜, 等. 超高压技术在水产品贮藏加工应用中的研究进展[J]. 食品安全质量检测学报, 2019, 10(18): 6 143-6 148.
[42] WANG S, WANG T, SUN T, et al. Effects of high hydrostatic pressure pretreatment on the functional and structural properties of rice bran protein hydrolysates[J]. Foods, 2022, 11(1): 29.
[43] FRANCK M, PERREAULT V, SUWAL S, et al. High hydrostatic pressure-assisted enzymatic hydrolysis improved protein digestion of flaxseed protein isolate and generation of peptides with antioxidant activity[J]. Food Research International, 2019, 115: 467-473.
[44] GUAN H, DIAO X, JIANG F, et al. The enzymatic hydrolysis of soy protein isolate by Corolase PP under high hydrostatic pressure and its effect on bioactivity and characteristics of hydrolysates[J]. Food Chemistry, 2018, 245: 89-96.
[45] DONG X H, LI J, JIANG G X, et al. Effects of combined high pressure and enzymatic treatments on physicochemical and antioxidant properties of peanut proteins[J]. Food Science & Nutrition, 2019, 7(4): 1 417-1 425.
[46] YAMAMOTO K. Food processing by high hydrostatic pressure[J]. Bioscience, Biotechnology, and Biochemistry, 2017, 81(4): 672-679.
[47] ZHANG S Y, DONG L, SUN L Z, et al. Use of a Combination of the MD Simulations and NMR spectroscopy to de-termine the regulatory mechanism of Pulsed Electric Field (PEF) targeting at C-Terminal histidine of VNAVLH[J]. Food Chemistry, 2020, 334: 127554.
[48] CHIAN F M, KAUR L, OEY I, et al. Effect of pulsed electric fields (PEF) on the ultrastructure and in vitro protein digestibility of bovine longissimus thoracis[J]. LWT, 2019, 103: 253-259.
[49] 姜薇, 金声琅, 殷涌光. 鹿茸抗氧化多肽高压脉冲电场辅助酶法提取及纯化工艺优化[J]. 食品与机械, 2018, 34(3): 180-185.
[50] FRANCO D, MUNEKATA P E S, AGREGN R, et al. Application of pulsed electric fields for obtaining antioxidant extracts from fish residues[J]. Antioxidants, 2020, 9(2): 90.
[51] 张鸣镝, 姜源, 李雄, 等. 高压脉冲电场技术提高红松籽抗氧化肽活性[J]. 农业工程学报, 2015, 31(14): 272-277.
[52] 李雄, 郭星, 余佩, 等. 高压脉冲电场技术改变抗氧化活性肽MMCTN的二级结构的实验研究[J]. 食品工业科技, 2016, 37(3): 74-78.
[53] 郭超凡, 王云阳. 蛋白质物理改性的研究进展[J]. 食品安全质量检测学报, 2017, 8(2): 428-433.
[54] 康永锋, 康俊霞, 吴文惠, 等. 超声波、微波对鲑鱼肽结构及抗氧化性的影响[J]. 食品工业科技, 2013, 34(5): 66-71.
[55] HABINSHUTI I, MU T, ZHANG M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein[J]. Ultrasonics Sonochemistry, 2020, 69: 105262.
[56] ALIZADEH O, ALIAKBARLU J. Effects of ultrasound and ohmic heating pretreatments on hydrolysis, antioxidant and antibacterial activities of whey protein concentrate and its fractions[J]. LWT, 2020, 131: 109913.
[57] 陆海勤, 宫晓丽, 李冬梅, 等. 响应面优化超声协同高压矩形脉冲电场提取黄花菜多糖工艺及其抗氧化活性研[J]. 食品工业科技, 2020, 41(11): 163-170.
[58] 胡双飞, 张学武, 范晓丹. 超声耦合亚临界水提取螺旋藻粗蛋白及其抗氧化活性研究[J]. 现代食品科技, 2018, 34(9): 150-157.
[59] WANG Y, TAYYAB RASHID M T, YAN J, et al. Effect of multi-frequency ultrasound thawing on the structure and rheological properties of myofibrillar proteins from small yellow croaker[J]. Ultrasonics Sonochemistry, 2020, 70: 105352.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.