Abstract
The structure and characteristics of nano-antibody and their applications in the detection of mycotoxins, pesticide and veterinary drug residues, small molecule toxic substances and other small molecule pollutants were introduced, and the development direction of nano-antibody in biological detection technology and diagnosis research was prospected.
Publication Date
4-25-2023
First Page
236
Last Page
240
DOI
10.13652/j.spjx.1003.5788.2022.80508
Recommended Citation
Ping, JIN; Hong-liu, DING; Xiao-hong, JIN; Qi-liang, SHEN; and Chun-yan, FAN
(2023)
"Progress in the application of nano-antibody in the detection of small molecular contaminants in food,"
Food and Machinery: Vol. 39:
Iss.
2, Article 37.
DOI: 10.13652/j.spjx.1003.5788.2022.80508
Available at:
https://www.ifoodmm.cn/journal/vol39/iss2/37
References
[1] 唐颂, 李岩松, 尚翠玲, 等. 玉米赤霉烯酮间接竞争 ELISA 方法的建立[J]. 食品工业科技, 2022, 43(4): 300-304.
[2] SHIHWEI W, JIUNNLIANG K, BIINGHUI L, et al. Pilot production of a sensitive ELISA kit and animmunochromatographic strip for rapid detecting citrinin in fermented rice[J]. RSC Adv, 2022, 12: 19 981-19 989.
[3] 丁然, 王元凤, 桑丽雅, 等. 基于铂包金的啶虫脒间接竞争酶联免疫检测方法的构建[J]. 食品工业, 2021, 42(10): 285-289.
[4] 蒋文慧, 吴小胜, 崔娜, 等. 一种多菌灵酶联免疫快速检测方法的建立[J]. 食品与机械, 2021, 37(1): 94-98.
[5] 刘姚, 韦倩妮, 王弘, 等. 直接竞争ELISA法检测蜂蜜中氯霉素残留[J]. 食品科学, 2018, 39(16): 336-342.
[6] BUI Q A, VU T H H, NGO V K T, et al. Development of an ELISA to detect clenbuterol in swine products using a new approach for hapten design[J]. Analytical and Bioanalytical Chemistry, 2016, 408: 6 045-6 052.
[7] 尚淑娜, 生威, 王璐璐, 等. 间接竞争ELISA检测食品中的邻苯二甲酸二丁酯[J]. 食品与机械, 2019, 35(5): 67-71, 155.
[8] 张玉超, 刘旭东. 基于单克隆抗体的双酚 A 间接竞争酶联免疫分析法的建立[J]. 食品研究与开发, 2020, 41(17): 172-177.
[9] KRHLING V, HALWE S, ROHDE C, et al. Development and characterization of an indirect ELISA to detect SARS-CoV 2 spike protein-specific antibodies[J]. Journal of Immunological Methods, 2021, 490: 112958.
[10] RL A, MS B, SS C, et al. Evaluation of ELISA-based method for totalanabaenopeptins determination and comparative analysis with on-line SPE-UHPLC-HRMS in freshwater cyanobacterial blooms[J]. Talanta, 2020, 223: 121802.
[11] MITCHELL L S, COLWELL L J. Analysis of nanobody paratopes reveals greater diversity than classical antibodies[J]. Protein Engineering, Design & Selection, 2018, 31(7/8): 267-275.
[12] 何晓婷, 董洁娴, 沈兴, 等. 纳米抗体的稳定性及其结构基础研究进展[J]. 生物化学与生物物理进展, 2022, 49(6): 1 004-1 017.
[13] FERRARI D, GARRAPA V, LOCATELLI M, et al. A novel nanobody scaffold optimized for bacterial expression and suitable for the construction of ribosome display libraries[J]. Molecular Biotechnology, 2020, 62(1): 43-55.
[14] ROBERT J H, HYEYOUNG E, JAMES R H. Structure and development of single domain antibodies as modules for therapeutics and diagnostics[J]. Experimental Biology and Medicine, 2019, 244(17): 1 568-1 576.
[15] DIRK S. Isolation and optimization of camelid single-domain antibodies: Dirk Saerens' work on nanobodies[J]. World Journal of Biological Chemistry, 2010(7): 235-238.
[16] 马兴元. 神奇的纳米抗体[J]. 十万个为什么(探索版), 2022(7): 6-7.
[17] 李静颖, 李志伟, 肖书奇. 纳米抗体与疫病防治[J]. 动物医学进展, 2021, 42(8): 112-116.
[18] 陈波. 纳米抗体在小分子检测中的应用. (2022-08-01) [2022-08-10]. http://www.nanobody-biolab.com/blogsshow.aspx?mid=59&fl=12&id=15.
[19] 何晓婷, 陈子键, 黄松, 等. 基于纳米抗体的胶体金免疫层析法快速检测蔬菜中的腐霉利[J/OL]. 食品科学. (2022-04-25) [2022-08-10]. http://kns.cnki.net/kcms/detail/11.2206.TS.20220425.1439.014.html.
[20] LI B, QIN X, MI L Z. Nanobodies: From structure to applications in non-injectable and bispecific biotherapeutic development[J]. Nanoscale, 2022, 14: 7 110-7 122.
[21] 孙山, 谭星, 庞晓燕, 等. 纳米抗体技术应用的最新进展[J]. 生物工程学报, 2022, 38(3): 855-867.
[22] 于吉军, 杨光, 周婷婷, 等. 骆驼来源单域抗体的研究进展[J]. 国际药学研究杂志, 2017, 44(1): 18-23.
[23] CONRATH K E, WERNERY U, MUYLDERMANS S, et al. Emergence and evolution of functional heavy-chain antibodies in Camelidae[J]. Dev Comp Immunol, 2003, 27(2): 87-103.
[24] CHAN P H, PARDON E, MENZER L, et al. Engineering a camelid antibody fragment that binds to the active site of human lysozyme and inhibits its conversion into amyloid fibrils[J]. Bio-Chemistry, 2008, 47(42): 11 041-11 054.
[25] MARQUARDT A, MUYLDERMANS S, PRZYBYLSKI M. A synthetic camel anti-lysozyme peptide antibody (peptibody) with flexible loop structure identified by high-resolution affinity mass spectrometry[J]. Chemistry, 2006, 12(7): 1 915-1 923.
[26] SALVATRICE C, PAMELA A B, ELENA C, et al. The camel adaptive immune receptors repertoire as a singular example of structural and functional genomics[J]. Frontiers in Genetics, 2019, 10: 997.
[27] 邓文月, 张维达, 孙慧敏, 等. 纳米抗体特性及其在冠状病毒研究中的应用[J]. 生物技术, 2022, 32(1): 126-133.
[28] LIU X, XU Y, XIONG Y H, et al. Nb phage-based competitive real-time immuno-polymerase chain reaction for ultrasensitive detection of ochratoxin A in cereal[J]. Anal Chem, 2014, 86(15): 7 471-7 477.
[29] BEVER C R, MAJKOVA Z, RADHAKRISHNAN R, et al. Development and utilization of camelid Nb antibodies from alpaca for 2,2′,4,4′-tetrabrominated diphenyl ether detection[J]. Anal Chem, 2014, 86(15): 7 875-7 882.
[30] AKAZAWA-OGAWA Y, UEGAKI K, HAGIHARA Y. The role of intra-domain disulfide bonds in heat-induced irreversible denaturation of camelid single domain Nb antibodies[J]. J Biochem, 2016, 159(1): 111-121.
[31] HAGIHARA Y, SAERENS D. Engineering disulfide bonds within an antibody[J]. Biochim Biophys Acta, 2014, 1 844(11): 2 016-2 023.
[32] LINDEN R, FRENKEN L, GEUS B D, et al. Comparison of physical chemical properties of llama VHH antibody fragments and mouse monoclonal antibodies[J].Biochimica et Biophysica Acta, 1999, 1 431(1): 37-46.
[33] HE T, WANG Y R, LI P W, et al. Nanobody-based enzyme immunoassay for aflatoxin in agro-products with high tolerance to cosolvent methanol[J]. Anal Chem, 2014, 86(17): 8 873-8 880.
[34] ZHANG Y Q, XU Z L, WANG F, et al. Isolation of bactrian camel single domain antibody for parathion and development of one-step dc-FEIA method using Nb-alkaline phosphatase fusion protein[J]. Anal Chem, 2018, 90(21): 12 886-12 892.
[35] ZHANG J R, WANG Y, DONG J X, et al. Development of a simple pretreatment immunoassay based on an organic solvent-tolerant nanobody for the detection of carbofuran in vegetable and fruit samples[J]. Biomolecules, 2019, 9(10): 576.
[36] 张长江, 张伟, 李新洋, 等. 双峰驼重链抗体组库的基本特征研究[J]. 现代生物医学进展, 2016(22): 4 207-4 212.
[37] 孔庆明. 纳米抗体及其在诊断检测中的研究进展[J]. 生物工程学报, 2014, 30(9): 1 351-1 361.
[38] 蔡冲, 闫洪林, 唐晓倩, 等. 纳米抗体特性及其在农产品真菌毒素检测中的应用[J]. 中国油料作物学报, 2022, 44(2): 451-455.
[39] 陈瑞鹏, 高志贤, 梁俊. 农产品中真菌毒素检测方法研究进展[J]. 食品安全质量检测学报, 2021, 12(6): 2 283-2 291.
[40] XIE G F, LU Y, LI W K, et al. Simultaneous heptamerization of nanobody and alkaline phosphatase by self-assembly and its application for ultrasensitive immunodetection of small molecular contaminants in agro-products[J]. Food Control, 2022, 141: 109156.
[41] 季艳伟. 花状纳米金及抗独特型纳米抗体在真菌毒素免疫学检测中的应用研究[D]. 南昌: 南昌大学, 2017: 31-90.
[42] 吴慧. 基于抗独特型纳米抗体的玉米赤霉烯酮绿色免疫分析研究[D]. 武汉: 湖北大学, 2016: 30-69.
[43] 司睿, 吴广培, 王锋, 等. 微囊藻毒素纳米抗体的制备及其间接竞争酶联免疫分析方法的建立[J]. 中国食品学报, 2022, 22(5): 6-13.
[44] 曹冬梅, 许杨, 涂追, 等. 基于纳米抗体—碱性磷酸酶融合蛋白的一步酶联免疫吸附分析法检测黄曲霉毒素B1[J]. 分析化学, 2016, 44(7): 1 085-1 091.
[45] LIU Z P, WANG K, WU S, et al. Development of an immunoassay for the detection of carbaryl in cereals based on a camelid variable heavy-chain antibody domain[J]. Journal of the Science of Food and Agriculture, 2019, 99(9): 4 383-4 390.
[46] 高海岗. 孔雀石绿纳米抗体的制备及其免疫层析检测方法的建立与应用[D]. 扬州: 扬州大学, 2020: 35-100.
[47] WANG J, MAJKOVA Z, BEVER C R S, et al. One-step immunoassay fortetrabromobisphenol a using a camelid single domain antibody: Alkaline phosphatase fusion protein[J]. Analytical Chemistry, 2015, 87(9): 4 741-4 748.
[48] FU H J, WANG Y, XIAO Z L, et al. A rapid and simple fluorescence enzyme-linked immunosorbent assay for tetrabromobisphenol A in soil samples based on a bifunctional fusion protein[J]. Ecotoxicology and Environmental Safety, 2020, 188(1): 109904.
[49] 姜忍忍. 重金属Cd纳米抗体的制备及其免疫学检测方法的建立与应用[D]. 上海: 上海师范大学, 2014: 28-70.
[50] 俞华齐. 基于纳米抗体的重金属Cr免疫学检测方法研究[D]. 上海: 华东理工大学, 2016: 24-64.