•  
  •  
 

Corresponding Author(s)

王诚远(1988—),男,江中食疗科技有限公司高级工程师,博士。E-mail:cywanga421@163.com钟虹光(1958—),男,江中食疗科技有限公司主任医师,博士。E-mail:zhg@jzsl.net

Abstract

Objective: The preventive and therapeutic effects of the aqueous extract of Ficus pumila on COPD model rats were observed and its mechanism was also discussed. Methods: COPD model was established by intratracheal injection of lipopolysaccharide and smoking. Using the pulmonary function test, the level of related inflammatory factors detection in the BALF by ELISA, the blood gas analysis and HE staining for lung pathological observation. Results: The results showed that the indexes of the model rats were consistent with the pathological characteristic of COPD. The model group animals had obvious airflow obstruction, while the high dose of F. pumila aqueous extract group could significantly increase the levels of FVC, Fev0.3, PEF, Fev0.3/FVC (P<0.01), similar to the results of positive control drug (aminophylline). There was abnormal exchange of O2 and CO2 in the lungs of the model rats; At the same time, the high dosage of Ficus pumila aqueous extract can significantly improve the pulmonary ventilation function of COPD, and the effect was better than positive drug. Medium dose-, high dose aqueous extract group and positive drug group could significantly reduce the number of leukocytes (P<0.05). High dosage aqueous extract could significantly improve TNF-α, IL-8, IL-1, elastase, platelet activating factor and other inflammatory factors (P<0.05), while positive drug only had a significant effect on platelet activating factor (P<0.01). High dosage aqueous extract could reduce the pathological conditions of lung inflammation cell infiltration, goblet cell and gland hyperplasia, alveolar dilatation and smooth muscle thickening caused by COPD. Conclusion: High dosage aqueous extract of F. pumila could improve the pulmonary dysfunction and inflammation level of COPD in rats.

Publication Date

4-25-2023

First Page

147

Last Page

152

DOI

10.13652/j.spjx.1003.5788.2022.80918

References

[1] 梁瑞红, 毕双同, 刘成梅, 等. 薜荔籽果胶凝胶特性的研究[J]. 食品科学, 2008, 29(11): 110-113.
[2] 陈百玲, 邵伟. 薛荔籽果冻加工工艺[J]. 食品工业科技, 2001, 22(3): 2.
[3] 唐翠娥. 薛荔籽果胶的提取工艺及其性质研究[D]. 南昌: 南昌大学, 2007: 1-9.
[4] 张磊, 冯媛媛, 刘雄, 等. 薛荔籽果胶对去势雌性大鼠矿物质吸收的影响[J]. 食品科学, 2012, 33(7): 261-265.
[5] 陆红佳, 苏昕峰, 唐艳, 等. 薛荔籽果胶改善辣椒素诱导的去势雌性大鼠肠道内环境的损伤[J]. 食品科学, 2013, 34(19): 293-297.
[6] 唐艳, 桂余, 任文瑾, 等. 水提薛荔籽果胶对去势雌性大鼠肠道健康的影响[J]. 食品工业科技, 2013, 34(21): 347-356.
[7] 李本姣, 陆红佳, 唐艳, 等. 薛荔籽果胶对高脂膳食去势大鼠脂质代谢及盲肠内环境的影响[J]. 食品科学, 2015, 36(15): 183-188.
[8] 广西壮族自治区食品药品监督管理局. 广西壮族自治区瑶药材质量标准: 一卷: DYB45-GXYYC0142[S]. 南宁: 广西科学技术出版社, 2014: 221.
[9] 黄秋萍, 韦友欢, 黄秋婵, 等. 薛荔藤总黄酮的超声辅助法提取工艺优化及抗氧化活性研究[J]. 食品科技, 2021, 46(5): 194-198.
[10] 范明松, 叶冠, 黄成钢, 等. 薛荔化学成分研究[J]. 中草药, 2005, 36(7): 984-985.
[11] 吴文珊, 王飞扬, 方玉霖, 等. 薛荔抑菌效应的研究[J]. 福建热作科技, 2004, 29(2): 5-16.
[12] VESTBO J, EDWARDS L D, SCANLON P D, et al. Changes in forced expiratory volume in 1 second over time in COPD[J]. N Engl J Med, 2011, 29(13): 1 184-1 192.
[13] CURTIS J L, FREEMAN C M, HOGG J C. The immunopatho-genesis of chronic obstructive pulmonary disease: Insights from recent research[J]. Proc Am Thorac Soc, 2007, 4(7): 512-521.
[14] KEW K M, DIAS S, CATES C J. Long-acting inhaled therapy (beta-agonists, anticholinergics and steroids) for COPD: A network meta-analysis[J]. Cochrane Database Syst Rev, 2014, 26(3): CD010844.
[15] ALAGHA K, PALOT A, SOFALVI T, et al. Long-acting muscarinic receptor antagonists for the treatment of chronic airway diseases[J]. Ther Adv Chronic Dis, 2014, 5(2): 85-98.
[16] BAEK E B, RHO J H, JUNG E, et al. Protective effect of Palmijihwanghwan in a mouse model of cigarette smoke and lipopolysaccharide-induced chronic obstructive pulmonary disease[J]. BMC Complement Med Ther, 2021, 21(1): 281.
[17] RHO J, SEO C S, HONG E J, et al. Yijin-Tang attenuates cigarette smoke and lipopolysaccharide-induced chronic obstructive pulmonary disease in mice[J]. Evid Based Complement Alternat Med, 2022, 2 022: 7902920.
[18] HIKICHI M, MIZUMURA K, MARUOKA S, et al. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke[J]. J Thorac Dis, 2019, 11(Suppl): S2129-S2140.
[19] HOGG J C, CHU F, UUTOKAPARCH S, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease[J]. N Engl J Med, 2004, 24(26): 2 645-2 653.
[20] HUTCHISON N, FLIGNY C, DUFFIELD J S. Resident mesenchymal cells and fibrosis[J]. Biochim Biophys Acta, 2013, 1 832(7): 962-971.
[21] BARNES P J. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2016, 138(1): 16-27.
[22] CHEN J, YANG X, ZHANG W, et al. Therapeutic effects of resveratrol in a mouse model of LPS and cigarette smoke-induced COPD[J]. Inflammation, 2016, 39(6): 1 949-1 959.
[23] MALAVIYA R, LASKIN J D, LASKIN D L. Anti-TNFα therapy in inflammatory lung diseases[J]. Pharmacol Ther, 2017, 180: 90-98.
[24] WANG Z, ZHENG T, ZHU Z, HOMER R J, et al. Interferon gamma induction of pulmonary emphysema in the adult murine lung[J]. J Exp Med, 2000, 192(11): 1 587-1 600.
[25] 熊国红, 林海, 何建国, 等. 樟树叶精油抗PM2.5致肺上皮细胞损伤的研究[J]. 食品与机械, 2019, 35(9): 169-172.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.