Abstract
Objective: This study aimed to develop an auric-lowering peptide of skipjack byproducts (SPBp) with Xanthine oxidase (XOD) inhibition activity and improve the utilization rate of byproducts of skipjack. Methods: Based on the response surface methodology, several parameters affecting this process were investigated, including protease types and enzymatic dosages, pH, temperature, time and their interactions on the content of amino-nitrogen, solid content and XOD inhibition activity. Results: The results showed that trypsin was the best protease. The optimal process parameters were as follows: the dosage of the enzyme was 4%, pH 8.0, temperature 55 ℃, time 5 h, solid-liquid ratio 1∶3 (g/mL). Under the control of the optimal conditions, the solid content was 4.12%; XOD inhibition activity was 43.941%, which were all in good agreement with the predicted values. SPBp-XOIP showed strong radical scavenging activity against hydroxyl and DPPH radicals with ED50 values of 6.0 mg/mL and 10.0 mg/mL, respectively. Conclusion: The meat of Skipjack has the potential to prepare XOD inhibitory peptides, which can be used as dietary function factors in antioxidant stress and prevention of hyperuricemia.
Publication Date
4-25-2023
First Page
153
Last Page
160
DOI
10.13652/j.spjx.1003.5788.2022.90252
Recommended Citation
Yu-rou, CHU; Ji-peng, SUN; Qiu-yu, ZHU; Wei, YAO; Ru, SONG; and Jia-xing, WANG
(2023)
"Optimization of preparation and in-vitro activity of uricate-lowering peptide from dorsal belly meat of skipjack,"
Food and Machinery: Vol. 39:
Iss.
3, Article 26.
DOI: 10.13652/j.spjx.1003.5788.2022.90252
Available at:
https://www.ifoodmm.cn/journal/vol39/iss3/26
References
[1] 周洁, 孙超, 李飞, 等. 中药活性成分降尿酸作用机制研究进展[J]. 中国药理学通报, 2018, 34(1): 19-22.
[2] WANG Y, ZHANG G, PAN J, et al. Novel insights into the inhibitory mechanism of kaempferol on xanthine oxidase[J]. Journal of Agricultural and Food Chemistry, 2015, 63(2): 526-534.
[3] EKUNDAYO O J, DELL'ITALIA L J, SANDERS P W, et al. Association between hyperuricemia and incident heart failure among older adults: A propensity-matched study[J]. International Journal of Cardiology, 2010, 142(3): 279-287.
[4] PUDDU P, PUDDU G M, CRAVERO E, et al. Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: Molecular mechanisms and clinical implications[J]. Journal of Cardiology, 2012, 59(3): 235-242.
[5] 任昊, 刘宏发, 刘郑荣. 高尿酸血症和肾脏[J]. 现代中西医结合杂志, 2008, 17(1): 152-154.
[6] MASSEY V, BRUMBY P E, KOMAI H, et al. Studies on milk xanthine oxidase some spectral and kinetic properties[J]. Journal of Biological Chemistry, 1969, 244(7): 1 682.
[7] MASUO K, KU B. Characterization of the xanthine oxidase inhibitory activity of alk(en)yl phenols and related compounds[J]. Phyto Chemistry, 2018, 155: 100-106.
[8] FRANCES R, MICHELLE H, MICHAEL D. Optimizing current treatment of gout[J]. Nature Reviews Rheumatology, 2014, 10(5): 271-283.
[9] BURNS C M, WORTMANN R L. Gout therapeutics: New drugs for an old disease[J]. The Lancet, 2011, 377(9 760): 165-177.
[10] NILE S H, NILE A S, KEUM Y S, et al. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors[J]. Food Chemistry, 2017, 235: 119-126.
[11] LEE C T, CHANG L C, LIU C W, et al. Negative correlation between serum uric acid and kidney URAT1 mRNA expression caused by resveratrol in rats[J]. Molecular Nutrition & Food Research, 2017, 61(10): 1-9.
[12] SANG M M, DU G Y, HAO J, et al. Modeling and optimizing inhibitory activities of Nelumbinis folium extract on xanthine oxidase using response surface methodology[J]. Journal of Pharmaceutical & Biomedical Analysis, 2017, 139: 37-43.
[13] 黎青勇. 核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究[D]. 广州: 华南理工大学, 2018: 9-12.
[14] MAJKOWSKI J. Global fishery resources of tuna and tuna-like species[M]. 483 ed. Rome: FAO Fisheries Technical Paper, 2007: 11-38.
[15] 陈洋洋, 陈新军. 中西太平洋鲣鱼渔业研究进展[J]. 广东海洋大学学报, 2017, 37(5): 34-43.
[16] FUJITA H, YAMAGAMI T, OHSHIMA K. Effects of an ace-inhibitory agent, katsuobushi oligopeptide, in the spontaneously hypertensive rat and in borderline and mildly hypertensive subjects 1[J]. Nutrition Research, 2001, 21(8): 1 149-1 158.
[17] 宋茹. 黄鲫(Setipinna Taty)蛋白抗菌肽的制备及抗菌功能等生物活性研究[D]. 青岛: 中国海洋大学, 2011.
[18] 王镜岩, 朱圣庚, 徐长法. 生物化学:上册[M]. 北京: 高等教育出版社, 2002: 173-174.
[19] 叶丽珠, 陈慧斌, 刘智禹. 花蛤蒸煮液喷雾干燥法制蛤粉工艺优化研究[J]. 渔业研究, 2017, 39(6): 469-475.
[20] 陈君琛, 周学划, 赖谱富, 等. 大球盖菇漂烫液喷雾干燥制营养精粉工艺优化[J]. 农业工程学报, 2012, 28(21): 272-279.
[21] 邹琳. 鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D]. 杭州: 浙江大学, 2019: 56.
[22] 陈文超. 苹果渣低聚糖的提取纯化及抗氧化性研究[D]. 太原: 山西大学, 2017.
[23] FAO/WHO. Protein quality evaluation[M]. Italy: Food and Agriculture Organization of the United Nations, 1991: 51.
[24] 赵贵琴, 李婷婷, 宋敏杰, 等. 分子对接技术筛选鲈鱼肌球蛋白中黄嘌呤氧化酶抑制肽[J]. 中国食品学报, 2021, 21(6): 81-91.
[25] SKIBO E B. Noncompetitive and irreversible inhibition of xanthine oxidase by benzimidazole analogues acting at the functional flavin adenine dinucleotide cofactor[J]. Biochemistry, 1986, 25(15): 89-94.
[26] NONGONIERMA A B, MAUX S L, HAMAYON J, et al. Strategies for the release of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides in an enzymatic hydrolyzate of α-lactalbumin[J]. Food & Function, 2016, 7(8): 3 437-3 443.
[27] 田旭静, 段鹏慧, 范三红, 等. 响应面法优化酶解藜麦糠蛋白制备抗氧化肽工艺[J]. 食品科学, 2018, 39(10): 158-164.
[28] 钟机. 蓝圆鲹鱼肉蛋白酶解液的制备及其Maillard反应生香工艺研究[D]. 福州: 福建农林大学, 2017: 15-17.
[29] SOARES J R,DINS T C P,CUNHA A P, et al. Antioxidant activities of some extracts of Thymus zygis[J]. Free Radical Res, 1997, 26: 469-478.
[30] 曹振海, 乐彩虹, 陶宁萍, 等. 体外模拟消化对暗纹东方鲀鱼皮胶原蛋白肽结构特征及抗氧化活性的影响[J]. 食品与发酵工业, 2021, 47(23): 61-69.
[31] 刘乐, 李艳, 连加达, 等. 藜麦醇溶蛋白的氨基酸组成、抗氧化性与乳化性研究[J]. 食品与发酵工业, 2022, 48(13): 181-187.
[32] SINGH D, CHANDER V, CHOPRA K. The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats[J]. Arch Med Res, 2004, 35: 484-494.