Abstract
Objective: This study aimed to investigate the technological conditions for the preparation of antioxidant hydrolysate of Agaricus blazei Murill and analyze the nutritional components of the hydrolysate. Methods: Papain, cellulase and pectinase were prepared in mpapain∶mcellulase∶mpectinase ratio of 3∶4∶4 to dissolve the fruiting bodies of A. blazei. Response surface test was used to optimize the enzymatic hydrolysis process of A. blazei. Results: The optimal conditions of compound enzyme hydrolysis were as follows: compound enzyme dosage 0.5%, pH 6.2, hydrolysis temperature 49 ℃, hydrolysis time 147 min. Under these conditions, when the concentration of A. blazei hydrolysate was 2.0 mg/mL, the DPPH radical scavenging rate was 69.15%, showing strong antioxidant activity. The protein content of enzymatic hydrolysate was (1 013.83±25.11) mg/100 mL, crude fat content was (150.17±1.21) mg/100 mL, total sugar content was (721.41±8.74) mg/100 mL, and polysaccharide content was (138.83±1.66) mg/100 mL. The content of free amino acids was (800.94±12.36) mg/100 mL, of which essential amino acids accounted for 40.22%. Conclusion: The hydrolysate of A. blazei prepared by compound enzyme method has strong antioxidant activity and high nutritional value, which can be developed as functional food.
Publication Date
4-25-2023
First Page
183
Last Page
187,232
DOI
10.13652/j.spjx.1003.5788.2022.80295
Recommended Citation
Zhuo-juan, CHEN; Xiu-xian, KE; and Xiao, HUANG
(2023)
"Preparation of antioxidant hydrolysate of Agaricus blazei Murill,"
Food and Machinery: Vol. 39:
Iss.
3, Article 30.
DOI: 10.13652/j.spjx.1003.5788.2022.80295
Available at:
https://www.ifoodmm.cn/journal/vol39/iss3/30
References
[1] 林戎斌, 林陈强, 张慧, 等. 姬松茸食药用价值研究进展[J].食用菌报, 2012, 19(2): 117-122.
[2] 陈海强, 胡汝晓, 黄晓辉, 等. 复合酶法水解香菇工艺的研究[J]. 微生物学通报, 2012, 39(1): 62-67.
[3] 段秀辉, 黄文, 李露, 等. 生物酶技术在食用菌加工中的应用[J]. 食用菌, 2014, 36(6): 3-6.
[4] 王馨. 姬松茸多糖生物活性研究与产品开发[D]. 成都: 西华大学, 2020: 7-8.
[5] 冯晴霞. 姬松茸多肽抗衰老作用及其机制研究[D]. 吉林: 北华大学, 2020: 1-3.
[6] 邢鹏. 姬松茸多酚分离纯化及抗氧化活性研究[D]. 长沙: 湖南农业大学, 2018: 2-3.
[7] 王耀冉, 赵妍, 陈明杰, 等. 8种食用菌蛋白及其酶解产物抗氧化活性研究[J]. 食品与机械, 2022, 38 (9): 134-138.
[8] 俞萍, 岳煜贤, 张宇, 等. 响应面法优化人参糖蛋白制备工艺[J]. 食品与机械, 2021, 37(7): 194-199.
[9] YANG H, HUA J L, WANG C. Anti-oxidation and anti-aging activity of polysaccharide from Malus micromalus Makino fruit wine[J]. International Journal of Biological Macromolecules, 2019, 121: 1 203-1 212.
[10] 郭华, 刁全平, 张博, 等. 杨树口蘑多糖的超声波辅助提取工艺及其抗氧化活性[J]. 食品工业科技, 2018, 39(5): 180-184.
[11] 廖慧琦, 曹少谦, 杨华, 等. 鲐鱼免疫活性肽的酶解工艺优化[J]. 食品工业科技, 2022, 43(14): 163-170.
[12] 陶美洁, 孟粉, 董烨, 等. 贻贝蒸煮液酶解工艺的优化[J]. 中国食品学报, 2020, 20(12): 209-219.
[13] 陈瑜, 马剑锋, 许丹, 等. 基于两步水解法制备三疣梭子蟹调味品的酶解工艺优化研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 321-335.
[14] 董彩虹, 温青玉, 李天齐, 等. 复合酶法制备小麦面筋蛋白咸味酶解液的工艺优化[J]. 食品工业科技, 2022, 43(3): 222-230.
[15] 黄雨, 刘魏红, 王洪阳, 等. 裙带菜孢子叶仿生酶解工艺优化及酶解肽的抗氧化活性分析[J]. 食品工业科技, 2022, 43(13): 180-189.
[16] 邵志芳, 皇甫洁, 刘文颖, 等. 基于乳清蛋白粉水解产物抗氧化活性优化酶解工艺[J]. 食品工业科技, 2020, 41(18): 143-149, 156.
[17] 孙小飞, 罗国瑞, 李英美, 等. 仿刺参精酶解工艺的优化及酶解液的抗氧化活性[J]. 中国食品学报, 2022, 22(4): 217-224.
[18] 徐勇, 孙培龙, 张安强. 姬松茸多糖提取、生物活性及产品开发研究进展[J]. 食药用菌, 2017, 25(5): 308-312.
[19] 艾有伟, 刘超群, 陈艳丽. 香菇、平菇酶解液成分及其免疫功能研究[J]. 食品科学, 2011, 32(19): 258-261.