Abstract
Objective: This study aimed to the optimize infrared drying process of Hami-melon slices and improve quality and efficiency. Methods: Using ultrasonic treatment as a pretreatment method, the effects of drying temperature, slice thickness and ultrasonic treatment time on drying time, color difference value and vitamin C content were studied, and the drying time, quality and microstructure of the products were compared with those without ultrasonic treatment. Results: The optimal process parameters of ultrasonic pretreatment for infrared drying of Hami-melon slices were drying temperature 61 ℃, slice thickness 6 mm and ultrasonic treatment time 15 min. Under the control of these conditions, the drying time was 115 min, the color difference value was 13.79, and the vitamin C content was 112.1 mg/100 g. Compared with the untreated products, the drying time was shortened by 45.24%, the color difference was reduced by 13.38%, and the vitamin C content was increased by 16.71%. The microstructure showed that ultrasonic waves caused the expansion and contraction of the internal tissue of Hami-melon slices, and the structure was multi-channel. Conclusion: Ultrasonic treatment can be used as a pretreatment method to improve the infrared drying of Hami-melon slices, thereby improve the quality and efficiency of the drying process.
Publication Date
4-25-2023
First Page
201
Last Page
206,240
DOI
10.13652/j.spjx.1003.5788.2022.80583
Recommended Citation
Yi-can, LI; Xia, ZHENG; Xue-dong, YAO; Tao-qing, YANG; and Ji-kai, ZHANG
(2023)
"Optimization of the infrared drying process for ultrasonic pretreatment of Hami-melon slices,"
Food and Machinery: Vol. 39:
Iss.
3, Article 33.
DOI: 10.13652/j.spjx.1003.5788.2022.80583
Available at:
https://www.ifoodmm.cn/journal/vol39/iss3/33
References
[1] 石晓微, 刘云宏. 超声—远红外辐射干燥对香蕉片品质的影响[J]. 食品与机械, 2021, 37(1): 204-209.
[2] GABRIELLA D D S, BARROS Z M P, DE MEDEIROS R A B, et al. Pretreatments for melon drying implementing ultrasound and vacuum[J]. LWT-Food Science and Technology, 2016, 74: 114-119.
[3] 孟繁博, 黄道梅, 郑秀艳, 等. 超声波预处理对热风干燥火龙果片品质的影响[J]. 食品与发酵工业, 2021, 47(13): 205-209.
[4] 张振亚, 韩琭丛, 金听祥, 等. 超声预处理对热泵干燥菠萝品质的影响[J]. 食品与发酵工业, 2022, 48(12): 111-116.
[5] 周頔, 孙艳辉, 蔡华珍, 等. 超声波预处理对苹果片真空冷冻干燥过程的影响[J]. 食品工业科技, 2015, 36(22): 282-286.
[6] 陈文敏, 彭星星, 马婷, 等. 超声处理对中短波红外干燥红枣时间及品质的影响[J]. 食品科学, 2015, 36(8): 74-80.
[7] SANTACATALINA J V, CONTRERAS M, SIMAL S, et al. Impact of applied ultrasonic power on the low temperature drying of apple[J]. Ultrasonics Sonochemistry, 2016, 28: 100-109.
[8] RODRIGUEZ O, GOMES W, RODRIGUES S, et al. Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple[J]. Ultrasonics Sonochemistry, 2017, 35: 92-102.
[9] 郑霞, 肖红伟, 王丽红, 等. 红外联合气体射流冲击方法缩短哈密瓜片的干燥时间[J]. 农业工程学报, 2014, 30(1): 262-269.
[10] 苑丽婧, 何秀, 林蓉, 等. 超声预处理对猕猴桃水分状态及热风干燥特性的影响[J]. 农业工程学报, 2021, 37(13): 263-272.
[11] 段续, 徐一铭, 任广跃, 等. 香菇分段变温红外喷动床干燥工艺参数优化[J]. 农业工程学报, 2021, 37(19): 293-302.
[12] 张茜, 肖红伟, 代建武, 等. 哈密瓜片气体射流冲击干燥特性和干燥模型[J]. 农业工程学报, 2011, 27(增刊): 382-388.
[13] XIAO H W, LAW C L, SUN D W, et al. Color change kinetics of American ginseng (Panax quinquefolium) slices during air impingement drying[J]. Drying Technology, 2014, 32(4): 418-427.
[14] 巨浩羽, 赵海燕, 张卫鹏, 等. 相对湿度对胡萝卜热风干燥过程中热质传递特性的影响[J]. 农业工程学报, 2021, 37(5): 295-302.
[15] WU X F, ZHANG M, BHANDARI B, et al. A novel infrared freeze drying (IRFD) technology to lower the energy consumption and keep the quality of Cordyceps militaris[J]. Innovative Food Science and Emerging Technologies, 2019, 54: 34-42.
[16] 汤诗琪. 哈密瓜风干片贮藏过程中品质变化及褐变机理研究[D]. 重庆: 重庆大学, 2018: 3-5.
[17] WANG X Y, GAO Y N, LI X H, et al. Effect of different drying methods on the quality and microstructure of fresh jujube crisp slices[J]. Journal of Food Processing and Preservation, 2021, 45: e15162.
[18] 巨浩羽, 赵海燕, 张菊, 等. 基于Dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草药, 2020, 51(15): 3 911-3 921.
[19] 白俊文, 周存山, 蔡健荣, 等. 南瓜片真空脉动干燥特性及含水率预测[J]. 农业工程学报, 2017, 33(17): 290-297.
[20] 郝启栋, 乔旭光, 郑振佳, 等. 超高压和超声波预处理对蒜片热风干燥过程及品质的影响[J]. 农业工程学报, 2021, 37(3): 278-286.
[21] 张迎敏, 任广跃, 屈展平, 等. 超声和烫漂预处理对红薯叶热风干燥的影响[J]. 食品与机械, 2019, 35(12): 194-201.
[22] 许丹妮, 苏秀芳, 黄丽娟. 细叶黄皮根总黄酮提取工艺优化及抑菌活性研究[J]. 食品与机械, 2022, 38(6): 156-160.
[23] 宋悦, 金鑫, 毕金峰, 等. 超声辅助渗透处理对热风干燥及真空冷冻干燥黄桃片品质的影响[J]. 食品科学, 2020, 41(15): 177-185.
[24] 刘云宏, 李晓芳, 苗帅, 等. 南瓜片超声—远红外辐射干燥特性及微观结构[J]. 农业工程学报, 2016, 32(10): 277-286.
[25] FERNANDES F A N, GALLO M I, RODRIGUES S. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration[J]. LWT-Food Science and Technology, 2008, 41(4): 604-61.
[26] 靳力为, 任广跃, 段续, 等. 超声预处理对杏片微波冻干过程中水分迁移的影响[J]. 食品与机械, 2020, 36(8): 15-21, 81.