Abstract
Objective: To solve the problems of poor accuracy and low sorting efficiency of the existing string fruits in robot sorting. Methods: Based on the structure of the high-speed parallel food sorting system, the improved SURF algorithm and the improved RANSAC algorithm were combined to locate the grab points of the food sorting robot, and a three-dimensional grab model was established to realize the automatic and stable grab of string fruits. Taking grapes as an example, the superiority and accuracy of the proposed method were verified by experiments. Results: Compared with the conventional method, the proposed method improved the average capture success rate by about 15.00% and the average capture time by 0.101 s. Conclusion: The food sorting robot can effectively improve the accuracy of the positioning of the holding points of string fruits, and has a high success rate.
Publication Date
6-5-2023
First Page
77
Last Page
82,162
DOI
10.13652/j.spjx.1003.5788.2022.60159
Recommended Citation
Yao-xing, XIAO; Li-xin, LIU; Liu, HU; and Yan-zhi, LU
(2023)
"Grab control method of food sorting robot based on 3D model,"
Food and Machinery: Vol. 39:
Iss.
4, Article 14.
DOI: 10.13652/j.spjx.1003.5788.2022.60159
Available at:
https://www.ifoodmm.cn/journal/vol39/iss4/14
References
[1] 梁翀, 李程启, 张彬彬, 等. 基于深度学习和超分辨率重构技术的图像缺陷诊断算法[J]. 山东农业大学学报(自然科学版), 2020, 51(3): 510-513.
[2] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[3] QIU H H, LIU L. A study on the evolution of carbon capture and storage technology based on knowledge mapping[J]. Energies, 2018, 11(5): 1-25.
[4] 郝大孝, 舒志兵, 孙学. 基于机器视觉的 Delta 机器人分拣与跟踪系统设计[J]. 机床与液压, 2019, 47(17): 36-42.
[5] 刘洁, 孙延永, 高磊. 基于NJ运动控制器的 Delta 机器人动态抓取控制系统设计[J]. 电子器件, 2018, 41(6): 1 554-1 559.
[6] 苏婷婷, 张好剑, 王云宽, 等. 基于费拉里法的 Delta 机器人动态目标抓取算法[J]. 华中科技大学学报(自然科学版), 2018, 46(6): 128-132.
[7] 毕宪东, 王振, 李朝龙. 基于Delta 机器人的食品生产线动态目标抓取方法[J]. 食品与机械, 2022, 38(6): 117-122.
[8] 王敏, 蒋金伟, 曹彦陶. 基于改进粒子群的食品分拣机器人动态目标抓取控制方法[J]. 食品与机械, 2022, 38(3): 86-91.
[9] 王红霞, 周家奇, 辜承昊, 等. 用于图像分类的卷积神经网络中激活函数的设计[J]. 浙江大学学报(工学版), 2019, 53(7): 1 363-1 373.
[10] 曾劲松, 薛文凯, 徐博凡, 等. 双目视觉引导机器人定位抓取技术的研究[J]. 组合机床与自动化加工技术, 2019, 12(1): 131-137.
[11] 林义忠, 陈旭. 基于机器视觉的机器人定位抓取的研究进展[J]. 自动化与仪器仪表, 2021, 11(3): 9-12.
[12] 贾超广, 肖海霞. 机器视觉的食品包装快速分拣系统[J]. 食品工业, 2021, 42(5): 276-279.
[13] 严培培. 面向非典型食品生产的高速机器人分拣系统设计[J]. 食品与机械, 2016, 32(2): 94-97.
[14] 柳振宇, 薛毓强, 谢祖强. 基于闭环和前馈控制的高速食品分拣机器人控制技术[J]. 食品与机械, 2021, 37(7): 87-93.
[15] 吴旭清, 黄家才, 周磊, 等. 并联机器人智能分拣系统设计[J]. 机电工程, 2019, 36(2): 224-228.
[16] 倪鹤鹏, 刘亚男, 张承瑞, 等. 基于机器视觉的Delta机器人分拣系统算法[J]. 机器人, 2016, 38(1): 49-55.
[17] 郝琳, 张坤平. 基于并联机器人的食品分拣控制系统设计[J]. 食品工业, 2020, 41(4): 209-212.
[18] 朱向楠, 韦源源. 基于位置姿势控制的并联机械手运动误差仿真分析[J]. 组合机床与自动化加工技术, 2021, 12(3): 49-52, 56.
[19] 张皓宇, 刘晓伟, 任川, 等. 并联机器人正运动学与 NURBS 轨迹规划[J]. 机械设计与制造, 2021, 12(4): 282-292.
[20] 董腾, 秦腾飞, 张如如, 等. 基于机器视觉的水果分拣系统[J]. 聊城大学学报(自然科学版), 2017, 30(1): 93-96.
[21] 张千, 高国琴. 并联机器人串类水果抓取模型及抓取位姿计算[J]. 农业工程学报, 2019, 35(23): 37-47.