•  
  •  
 

Corresponding Author(s)

卢明(1979—),男,湖南科技大学副教授,博士。E-mail: mlu@hnust.edu.cn

Abstract

Objective: This paper aimed to improve the accuracy of identification of small individual betel nuts and the degree of automation of betel nut processing plant by combining with deep learning. Methods: In this study, a novel feature extraction network named Mob-darknet-52 was proposed to construct a method of betel nut location and recognition based on improved YOLO algorithm by using multi-scale detection size. Results: the test showed that the proposed method had a detection accuracy of 94.8%, an accuracy rate of 94.5%, a recall rate of 95.1%, and a detection time of 6.679 ms in betel nut classification. Conclusion: The optimized algorithm based on improved YOLOV3 network can realize the rapid location and identification of betel nut in dense environment.

Publication Date

6-5-2023

First Page

83

Last Page

88

DOI

10.13652/j.spjx.1003.5788.2022.80816

References

[1] 孟继勇. 食用槟榔自动切籽机控制系统设计[D]. 西安: 西安电子科技大学, 2014: 5-18.
[2] 许月明, 蔡健荣, 龚莹辉. 基于计算机视觉的槟榔分级研究[J]. 食品与机械, 2016, 32(8): 91-94, 102.
[3] 黄良沛, 舒勇, 王宪. 自动点卤槟榔图像识别方法研究[J]. 食品与机械, 2020, 36(12): 95-98.
[4] 朱泽敏, 张东波, 张莹, 等. 基于语义分割的槟榔内核轮廓检测[J]. 计算技术与自动化, 2019, 38(4): 105-112.
[5] 傅隆生, 冯亚利, 刘智豪, 等. 基于卷积神经网络的田间多簇猕猴桃图像识别方法[J]. 农业工程学报, 2018, 34(2): 205-211.
[6] 周云成, 许童羽, 邓寒冰, 等. 基于双卷积链Fast R-CNN的番茄关键器官识别方法[J]. 沈阳农业大学学报, 2018, 49(1): 65-74.
[7] 梁喜凤, 章艳. 串番茄采摘点的识别方法[J]. 中国农机化学报, 2016, 37(11): 131-134, 149.
[8] GIRSHICK R. Fast R-CNN[C]// IEEE International Conference on Computer Vision. Santiago: IEEE Press, 2015: 1 440-1 448.
[9] REN S, HE S, GIRSHICK R. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6): 1 137-1 149.
[10] REDMON J, FARHADI A. Yolo9000: Better, faster, stronger[C]// Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu: IEEE Press, 2017: 7 263-7 271.
[11] DAI Y, LU M, CHEN Z G. A quick and accurate method to identify betel nut based on mobilenetv3[C]// The International Conference on Image, Vision and Intelligent Systems. Singapore: Springer Press, 2022: 745-756.
[12] HOWARD A, SANDLER M, CHU G, et al. Searching for Mobilenetv3[C]// The IEEE International Conference on Computer Vision. South Korea: IEEE Press, 2019: 1 314-1 324.
[13] ZHANG L L, LIN L, LIANG X D, et al. Is Faster R-CNN doing well for pedestrian detection?[C]// ECCV. Amsterdam: Springer Press, 2016: 443-457.
[14] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2021, 52(8): 8 574-8 586.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.