Abstract
Objective: This study aimed to investigate the residues and risk assessment of pesticides in peach gum. Methods: The quantitative analysis of 44 pesticide residues in peach gum was established based on liquid chromatography tandem-mass spectrometry (LC-MS/MS), and the pesticide residues in 173 peach gum samples were detected as well as the risk assessment of pesticide residues. Results: The limits of detection (LOD) and the limits of quantification (LOQ) of 44 kinds of pesticides in this quantitative method were between 0.05~1.80 μg/kg and 0.20~2.42 μg/kg, respectively. Recoveries of these pesticides ranged from 61.77%~119.48%. In 173 peach gum samples, 22 out of 44 pesticides were detected and the total detection rate of pesticides in peach gum was 98.8%. The detection rate of difenoconazole was the highest (95%), followed by chlorpyrifos (54%), carbendazim (34%), furamethoxam (32%) and pyraclostrobin (19%). The average residue of difenoconazole in different peach gum samples was the highest (0.332 mg/kg), followed by furamethoxam (0.093 mg/kg), carbendazim (0.061 mg/kg) and chlorpyrifos (0.033 mg/kg). Conclusion: Pesticide residues in peach gum were related to the usage of pesticides in peach production and were at a low risk level. It is recommended to pick peach gum from August to October.
Publication Date
6-9-2023
First Page
55
Last Page
63,100
DOI
10.13652/j.spjx.1003.5788.2022.80705
Recommended Citation
Ju, TIAN; Yong, LI; Chun-mao, LU; and Xiang-yang, YU
(2023)
"Analysis and risk assessment of pesticide residues in peach gum,"
Food and Machinery: Vol. 39:
Iss.
5, Article 10.
DOI: 10.13652/j.spjx.1003.5788.2022.80705
Available at:
https://www.ifoodmm.cn/journal/vol39/iss5/10
References
[1] 钱育恩. 桃胶的研究与应用进展[J]. 化工设计通讯, 2018, 44(6): 70.
QIAN Y E. Progress in research and application of peach gum[J]. Chemical Engineering Design Communications, 2018, 44(6): 70.
[2] 郑智敏. 广西恭城桃胶现朝阳产业端倪[J]. 果树实用技术与信息, 2019, 299(10): 46-47.
ZHENG Z M. Guangxi Gongcheng peach gum is now a sunrise industry clue[J]. Practical Techniques and Information on Fruit Trees, 2019, 299(10): 46-47.
[3] 潘文昭. 桃树胶的药用[J]. 农村新技术, 2012(4): 43.
PAN W Z. Medicinal uses of peach gum[J]. Nongcun Xinjishu, 2012(4): 43.
[4] LIU J, ZHANG X P, TIAN J, et al. Multiomics analysis reveals that peach gum colouring reflects plant defense responses against pathogenic fungi[J]. Food Chemistry, 2022, 383: 132424.
[5] 郑依玲, 董鹏鹏, 梅全喜. 桃胶特性化学成分药理作用及临床应用研究进展[J]. 时珍国医国药, 2017, 28(7): 1 728-1 730.
ZHENG Y L, DONG P P, MEI Q X. Research progress on pharmacological effects and clinical application of characteristic chemical constituents of peach gum[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(7): 1 728-1 730.
[6] 汪祖华, 陆振翔, 胡征令. 我国桃育种栽培技术的进展与成就[J]. 中国果树, 1989(4): 1-5.
WANG Z H, LU Z X, HU Z L. Progress and achievements of peach breeding and cultivation technology in my country[J]. Zhonguo Guoshu, 1989(4): 1-5.
[7] 何华丽, 徐小民, 周珊, 等. 液相色谱—串联质谱法测定桃中31种农药残留[J]. 理化检验(化学分册), 2014, 50(11): 1 351-1 356.
HE H L, XU X M, ZHOU S, et al. LC-MS/MS determination of residual amounts of 31 pesticides in peaches[J]. Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(11): 1 351-1 356.
[8] 陈双, 温清华, 陈雪梅, 等. GC/MS技术检测鲜桃中14种菊酯类农药残留[J]. 农药科学与管理, 2016, 37(8): 32-36.
CHEN S, WEN Q H, CHEN X M, et al. Determination of 14 pyrethroid pesticides residue in peach by GC/MS[J]. Pesticide Science and Administration, 2016, 37(8): 32-36.
[9] 马智玲, 李凌云, 刘新艳, 等. 气相色谱—飞行时间质谱联用快速筛查桃中的25种农药残留[J]. 热带作物学报, 2015, 36(4): 804-812.
MA Z L, LI L Y, LIU X Y, et al. Rapid screening of 25 pesticide residues in peach by gas chromatography-time of flight mass spectrometry[J]. Chinese Journal of Tropical Crops, 2015, 36(4): 804-812.
[10] 李海飞, 聂继云, 徐国锋, 等. 桃中农药残留分析及膳食暴露评估研究[J]. 分析测试学报, 2019, 38(9): 1 066-1 072.
LI H F, NIE J Y, XU G F, et al. Analysis of pesticide residues in peaches and their dietary exposure risk assessments[J]. Journal of Instrumental Analysis, 2019, 38(9): 1 066-1 072.
[11] 王冬群, 潘丹霞, 华晓霞, 等. 水蜜桃农药残留膳食摄入风险评估[J]. 安徽农业科学, 2016, 44(21): 126-130.
WANG D Q, PAN D X, HUA X X, et al. Dietary intake risk assessment of pesticide residue in honey peach[J]. Journal of Anhui Agricultural Sciences, 2016, 44(21): 126-130.
[12] 周纯洁, 候美玲, 何春兰, 等. LC-MS/MS技术在食品中农药多残留分析的应用进展[J]. 食品工业科技, 2019, 40(13): 283-286, 298.
ZHOU C J, HOU M L, HE C L, et al. Progress on application of LC-MS/MS technology in pesticide multiresidue analysis for food[J]. Science and Technology of Food Industry, 2019, 40(13): 283-286, 298.
[13] YAO Z, LIN M, XU M, et al. Simultaneous enantioselective determination of isocarbophos and its main metabolite isocarbophos oxon in rice, soil, and water by chiral liquid chromatography and tandem mass spectrometry[J]. Journal of Separation Science, 2015, 38(10): 1 663-1 672.
[14] 杭学宇, 吴珺玮, 宋鑫, 等. QuEChERS提取—超高效液相色谱—串联质谱法测定蔬菜中氨基甲酸酯类农药的残留量[J]. 理化检验(化学分册), 2020, 56(1): 60-65.
HANG X Y, WU J W, SONG X, et al. Determination of carbamate pesticides residues in vegetables by UPLC-MS/MS with QuEChERS extraction[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2020, 56(1): 60-65.
[15] 张月, 林靖凌, 韩丙军, 等. 超高效液相色谱—三重四极杆串联质谱法测定柑橘中4种苯甲酰脲类农药残留[J]. 农药学学报, 2014, 16(5): 614-618.
ZHANG Y, LIN J L, HAN B J, et al. Determining residues of 4 benzoylurea pesticides in citrus fruits by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science, 2014, 16(5): 614-618.
[16] 龚洋, 雷正达, 税丹, 等. 超高效液相色谱—串联质谱法快速测定马铃薯中多种酰胺类杀菌剂方法的研究[J]. 食品与发酵科技, 2019, 55(3): 95-99.
GONG Y, LEI Z D, SHUI D, et al. Simultaneous determination of amide fungicideresidues in potato by using quechers-ultra high performance liquid chromatographytandem mass spectrometry[J]. Food and Fermentation Sciences & Technology, 2019, 55(3): 95-99.
[17] 吴慧珍, 李晓丹, 汪建妹, 等. 选择性加速溶剂萃取法结合超高效液相色谱—串联质谱测定杭白菊中19种三唑类杀菌剂[J]. 分析测试学报, 2019, 38(6): 661-667.
WU H Z, LI X D, WANG J M, et al. Determination of 19 triazole fungicides in chrysanthemum morifolium by ultra performance liquid chromatography-tandem mass spectrometry combined with selective accelerated solvent extraction[J]. Journal of Instrumental Analysis, 2019, 38(6): 661-667.
[18] 窦银花. 高效液相色谱—串联质谱法测定油菜和油菜籽中草除灵残留量[J]. 食品与机械, 2022, 38(4): 81-84.
DOU Y H. Determination of anilazine in rape and rapeseed by LC-MS/MS[J]. Food & Machinery, 2022, 38(4): 81-84.
[19] 黄永桥, 马凯, 吴新文, 等. QuEChERS-UHPLC-MS/MS法测定黑木耳中米酵菌酸残留量[J]. 食品与机械, 2022, 38(7): 63-67.
HUANG Y Q, MA K, WU X W, et al. Determination of bongkrekic acid in Auricularia auricular combined QuEChERS with UHPLC-MS/MS[J]. Food & Machinery, 2022, 38(7): 63-67.
[20] 汪霞丽, 言剑, 张丽, 等. 市售韭菜中农药残留及重金属污染状况[J]. 食品与机械, 2022, 38(10): 76-81.
WANG X L, YAN J, ZHANG L, et al. Analysis of pesticide residues and heavy metal pollution in leek[J]. Food & Machinery, 2022, 38(10): 76-81.
[21] GOLGE O, KABAK B. Determination of 115 pesticide residues in oranges by high-performance liquid chromatography-triple-quadrupole mass spectrometry in combination with QuEChERS method[J]. Journal of Food Composition & Analysis, 2015, 41: 86-97.
[22] 张志恒, 汤涛, 徐浩, 等. 果蔬中氯吡脲残留的膳食摄入风险评估[J]. 中国农业科学, 2012, 45(10): 1 982-1 991.
ZHANG Z H, TANG T, XU H, et al. Dietary intake risk assessment of forchlorfenuron residue in fruits and vegetables[J]. Scientia Agricultura Sinica, 2012, 45(10): 1 982-1 991.
[23] 韦凯丽, 周晓龙, 闫巧俐, 等. 新疆甜瓜农药残留膳食风险评估[J]. 食品与机械, 2019, 35(8): 90-95.
WEI K L, ZHOU X L, YAN Q L, et al. Risk assessment of pesticide residues in muskmelon in Xinjiang[J]. Food & Machinery, 2019, 35(8): 90-95.
[24] 叶孟亮, 聂继云, 徐国锋, 等. 果品农药残留风险评估研究现状与展望[J]. 广东农业科学, 2016, 43(1): 117-124.
YE M L, NIE J Y, XU G F, et al. Research status and prospects of risk assessment of pesticide residues in fruits[J]. Guangdong Agricultural Sciences, 2016, 43(1): 117-124.
[25] 化学物质索引数据库\. (2016-03-03) [2022-09-11]. http://www.drugfuture.com/chemdata/.
Chemical index database\. (2016-03-03) [2022-09-11]. http://www.drugfuture.com/chemdata/.
[26] 郝变青, 秦曙, 王霞, 等. 山西果品主产区苹果、梨、桃和枣果实农药残留水平及评价[J]. 山西农业科学, 2015, 43(4): 452-455.
HAO B Q, QIN S, WANG X, et al. Detection and evaluation of pesticide residues in apple, pear, peach and jujube in Shanxi[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(4): 452-455.