Abstract
Objective: Optimize the preparation process of salt-soluble porcine liver protein and improve the utilization rate of porcine liver by-products. Methods: Taking the extraction rate as the index, the effects of NaCl concentration, pH, extraction time and solid-liquid ratio on the extraction rate of SSLP were analyzed, and the optimal preparation process was determined by orthogonal rotation optimization test. Taking water soluble liver proteins (WSLP) as the control, the functional characteristics (solubility, foaming, foam stability, emulsification, emulsification stability, etc.) of SSLP were compared and analyzed, and Fourier transform infrared spectroscopy (FT-IR) was used, the structural changes were analyzed by low field nuclear magnetic resonance (LF-NMR) and differential scanning calorimetry (DSC). Results: The optimum extraction process of SSLP was NaCl concentration 0.4 mol/L, pH 8, extraction time 12.95 h, solid-liquid ratio 1∶4.6 (g/mL), and the extraction rate was 10.60%. FT-IR analysis showed that the absorption peak of characteristic functional groups of SSLP was obvious and in the secondary structure β-The relative content of corner was 39.91%, α-The relative content of helix was 13.55%, β-The relative content of folding was 21.32%, and the relative content of random curl was 25.23%; LF-NMR analysis showed that SSLP had higher bound water and higher water retention; DSC results showed that the denaturation temperature of SSLP was 78.68 ℃. Conclusion: SSLP prepared under optimal process conditions has better solubility, foaming, emulsification and emulsification stability than WSLP, which is a high-quality source for the development of pig liver protein products.
Publication Date
6-9-2023
First Page
9
Last Page
15
DOI
10.13652/j.spjx.1003.5788.2022.80461
Recommended Citation
Hao-yang, WANG; Li-li, LIU; Wei-wei, CHENG; Bao-cheng, XU; and Ke-nan, SU
(2023)
"Extraction and functional characteristics and structural analysis of porcine liver salt soluble protein,"
Food and Machinery: Vol. 39:
Iss.
5, Article 2.
DOI: 10.13652/j.spjx.1003.5788.2022.80461
Available at:
https://www.ifoodmm.cn/journal/vol39/iss5/2
References
[1] 王英, 李洪军. 猪肝的利用现状及开发前景[J]. 肉类工业, 2004(9): 14-16.
WANG Y, LI H J. Utilization status and development prospect of pig liver[J]. Meat Industry, 2004(9): 14-16.
[2] 卢雪松, 丁捷, 任正伟, 等. 方便菜肴泡椒猪肝粒生产工艺优化[J]. 中国调味品, 2016(8): 45-48.
LU X S, DING J, REN Z W, et al. Optimization of production process of pork liver particies with pickied peppers[J]. China Condiment, 2016(8): 45-48.
[3] 王熙, 姚微, 曲彤旭, 等. 盐水猪肝加工工艺的研究[J]. 黑龙江八一农垦大学学报, 2009(4): 81-83.
WANG X, YAO W, QU T X, et al. Research on the processing crafts of boiled pig liver with salt[J]. Journal of Heilongjiang August First Land Reclamation University, 2009(4): 81-83.
[4] 余静, 王卫, 张佳敏, 等. 猪肝调味酱加工工艺优化[J]. 成都大学学报, 2017, 36(3): 247-251.
YU J, WANG W, ZHANG J M, et al. Optimization of processing technology of pig liver sauce[J]. Journal of Chengdu University, 2017, 36(3): 247-251.
[5] 黄静, 于素亚. 猪肝卵磷脂提取工艺研究[J]. 广东农业科学, 2010(1): 105-106.
HUANG J, YU S Y. Study on extraction technology of lecithin from pig liver[J]. Guangdong Agricultural Sciences, 2010(1): 105-106.
[6] 褚晨艳, 杨澜, 颜子晨, 等. 猪肝过氧化氢酶的提取及其对脂肪的抗氧化特性[J]. 轻工科技, 2018(4): 1-3.
ZHU C Y, YANG L, YAN Z C, et al. Extraction of catalase from pig liver and its antioxidant properties to fat[J]. Light Industry Science and Technology, 2018(4): 1-3.
[7] 李德玲, 刘欣, 王丽红, 等. 猪肝中提取纯化动物酯酶的研究[J]. 食品科学, 2007, 28(11): 379-381.
LI D L, LIU X, WANG L H, et al. Study on isolation and purification of animal esterase from pig liver[J]. Food Science, 2007, 28(11): 379-381.
[8] SOBHA G, SURYAKALA S, GEETHA C, et al. Camel kidney ferritin: Isolation and partial characterization[J]. Veterinary Research Communications, 2000, 24(5): 287.
[9] 史建超. 肝蛋白粉制备技术及有效成分研究[D]. 天津: 天津科技大学, 2008: 17-35.
SHI J C. Study on preparation technology and effective components of liver protein powder[D]. Tianjin: Tianjin University of Science and Technology, 2008: 17-35.
[10] ZOUARI N, FAKHFAKH N, AMARA-DALI W B, et al. Turkey liver: Physicochemical characteristics and functional properties of protein fractions[J]. Food and Bioproducts Processing, 2011, 89(2): 142-148.
[11] DEVATKAL S, MENDIRATTA S K, KONDAIAH N, et al. Physicochemical, functional and microbiological quality of buffalo liver[J]. Meat Science, 2004, 68(1): 79-86.
[12] 康梦瑶, 丁景, 鲁小川, 等. 超声波处理对水溶性猪肝蛋白乳化特性的影响[J]. 食品与发酵工业, 2020, 46(3): 144-151.
KANG M Y, DING J, LU X C, et al. Effect of ultrasonic treatment on emulsification characteristics of water-soluble pig liver protein[J]. Food and Fermentation Industries, 2020, 46(3): 144-151.
[13] STEEN L, GLORIEUX S, GOEMAERE O, et al. Functional properties of pork liver protein fractions[J]. Food and Bioprocess Technology, 2016, 9(6): 970-980.
[14] GONG K J, SHI A M, LIU H Z, et al. Emulsifying properties and structure changes of spray and freeze-dried peanut protein isolate[J]. Journal of Food Engineering, 2016, 170: 33-40.
[15] 杨希娟, 党斌, 吴昆仑, 等. 青稞蛋白的超声波辅助提取工艺及其功能特性研究[J]. 中国食品学报, 2013, 13(6): 48-56.
YANG X J, DANG B, WU K L, et al. Study on ultrasonic assisted extraction technology and functional characteristics of highland barley protein[J]. Chinese Journal of Food, 2013, 13(6): 48-56.
[16] PEARCE K N, KINSELLA J E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agricultural & Food Chemistry, 1978, 26(3): 716-723.
[17] MACHIDA S, IDOTA N, SUGAHARA Y. Interlayer grafting of kaolinite using trimethylphosphate[J]. Dalton Transactions, 2019, 48(31): 11 663-11 673.
[18] 周俊鹏, 朱萌, 章蔚, 等. 不同冷冻方式对淡水鱼品质的影响[J]. 食品科学, 2019, 40(17): 247-254.
ZHOU J P, ZHU M, ZHANG W, et al. Effect of different freezing methods on the quality of freshwater Fish[J]. Food Science, 2019, 40(17): 247-254.
[19] 刘丽莉, 代晓凝, 杨晓盼, 等. 喷雾冷冻干燥对鸡蛋清蛋白结构和特性的影响[J]. 食品与机械, 2020, 36(1): 30-35, 41.
LIU L L, DAI X N, YANG X P, et al. Effect of spray freeze drying on the structure and properties of egg white protein[J]. Food & Machinery, 2020, 36(1): 30-35, 41.
[20] 寇明钰. 花椒籽蛋白质分离提取及功能性质的研究[D]. 重庆: 西南大学, 2006: 11-23.
KOU M Y. Study on protein isolation and functional properties of Zanthoxylum bungeanum seeds[D]. Chongqing: Southwest University, 2006: 11-23.
[21] 尚永彪, 李洪军, 夏杨毅, 等. 溶液环境对 PSE 猪肉肌原纤维蛋白溶解度及热诱导凝胶强度的影响[J]. 食品科学, 2010, 31(5): 35-39.
SHANG Y B, LI H J, XIA Y Y, et al. Effect of solution conditions on solubility and heat-induced gel strength of PSE porcine myofibrillar proteins[J]. Food Science, 2010, 31(5): 35-39.
[22] 李莹, 王鹏, 徐幸莲, 等. 超高压处理对低磷酸盐鸡胸肉盐溶蛋白凝胶的影响[J]. 食品科学, 2013, 34(5): 60-66.
LI Y, WANG P, XU X L, et al. Effect of ultra high pressure treatment on salt soluble protein gel of low phosphate chicken breast[J]. Food Science, 2013, 34(5): 60-66.
[23] 孙卓, 李佩珊, 盛龙, 等. 超声处理对蛋清粉速溶性的影响[J]. 食品科学, 2018, 39(21): 78-86.
SUN Z, LI P S, SHENG L, et al. Effect of ultrasonic treatment on instant solubility of egg white powder[J]. Food Science, 2018, 39(21): 78-86.
[24] 潘成磊, 丁景, 董唯, 等. 热处理温度对猪肝水溶性蛋白乳化性质的影响[J]. 食品与发酵工业, 2018, 45(16): 82-89.
PAN C L, DING J, DONG W, et al. Effects of heat treatment temperature on emulsifying properties of water-soluble proteins in pig liver[J]. Food and Fermentation Industries, 2018, 45(16): 82-89.
[25] 齐宝坤, 赵城彬, 江连洲, 等. 不同热处理温度下大豆11S球蛋白Zeta电位、粒径和红外光谱分析[J]. 食品科学, 2018, 39(24): 61-65.
QI B K, ZHAO C B, JING L Z, et al. Analysis of zeta potential, particle size and infrared spectroscopy of 11S Glycinin at different heat treatment temperatures[J]. Food Science, 2018, 39(24): 61-65.
[26] 吴黎明, 周群, 周骁, 等. 蜂王浆不同贮存条件下蛋白质二级结构的Fourier变换红外光谱研究[J]. 光谱学与光谱分析, 2009, 29(1): 82-87.
WU L M, ZHOU Q, ZHOU X, et al. FT-IR assessment of the secondary structure of proteins in royal jelly under different storage conditions[J]. Spectroscopy and Spectral Analysis, 2009, 29(1): 82-87.
[27] 张秋会, 李苗云, 柳艳霞, 等. 离子强度对11S大豆球蛋白和鸡肌球蛋白质的二级结构及凝胶特性的影响[J]. 河南农业大学学报, 2018, 52(3): 424-429.
ZHANG Q H, LI M Y, LIU Y X, et al. Effects of ionic strength on secondary structures and gel characters of 11S globulin and chicken myosin[J]. Journal of Henan Agricultural University, 2018, 52(3): 424-429.
[28] 姜程耀, 林松毅, 李冬梅, 等. 电子束辐照对葵花籽蛋白微观结构和水解特性的影响[J]. 食品科学, 2020, 41(1): 100-104.
JIANG C Y, LIN S Y, LI D M, et al. Effect of electron beam irradiation on microstructure and hydrolysis characteristics of sunflower seed protein[J]. Food Science, 2020, 41(1): 100-104.