•  
  •  
 

Abstract

Objective: The molecular biological test has the advantage of fast and sensitive, which can effectively make up for the defects of the traditional microbial test method. Methods: According to the conserved sequences of the V3~V4 region of the virulence gene pcrL and the universal gene 16S rRNA of Pseudomonas aeruginosa in GB 8538—2022, primers and probes were designed and synthesized, and a real-time fluorescent PCR kit was established in this study. Results: The results showed that the common standard reserve strain 16S rRNA was amplified, and the virulence gene pcrL was only effective for nucleic acid detection of Pseudomonas aeruginosa standard reserve strain, and obvious "S" type amplification curve could be observed, while no amplification curve was found for common food-borne pathogens in this study. Gene pcrL still has amplification curve, when the concentration of bacterial solution was less than 10 CFU/mL, the detection range was 10~107 CFU/mL, and the detection limit was 10 CFU/mL. The Ct mean value of virulence gene pcrL under different bacterial solution concentrations ranged from 18.0 to 38.6. The results showed that this method was highly sensitive to the detection of the virulence factor pcrL carried by Pseudomonas aeruginosa. In the past three years, the unqualified Pseudomonas aeruginosa samples in 14 counties and cities of Hunan Province were further detected, and the coincidence rate reached 100%. Conclusion: This method is highly sensitive to detect the virulence factor pcrL carried by Pseudomonas aeruginosa. It has the advantages of simple operation, strong specificity, high sensitivity and good practicability.

Publication Date

10-20-2023

First Page

75

Last Page

80

DOI

10.13652/j.spjx.1003.5788.2023.80078

References

[1] 蒋明方. 铜绿假单胞菌感染与免疫[J]. 国外医学: 微生物学分册, 1990, 13(2): 72-74, 79. JIANG M F. Infection and immunity of Pseudomonas aeruginosa[J]. Med Abroad: Microbiol, 1990, 13(2): 72-74, 79.
[2] BASSETTI M, VENA A, CROXATTO A, et al. How to manage Pseudomonas aeruginosa infections[J]. Drugsin Context, 2018, 7: 1-18.
[3] WEI L, WU Q, ZHANG J, et al. Prevalence and genetic diversity of enterococcus faecalis isolates from mineral water and spring water in China[J]. Front Microbiol, 2017, 16(8): 1 109.
[4] FENG W, LI W, YUE L, et al. Molecular analysis of bacterial community in the tap water with different water ages of a drinking water distribution system[J]. Frontiers of Environmental Science & Engineering, 2018, 12(3): 6.
[5] SAMIE A, MASHAO M B, BESSONG P O, et al. Diversity and antibiograms of bacterial organisms isolated from samples of household drinking-water consumed by HIV-positive individuals in rural settings, South Africa[J]. Journal of Health Population & Nutrition, 2012, 30(3): 241-249.
[6] LU J, STRUEWING I, VEREEN E, et al. Molecular detection of Legionella spp. and their associations with Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in a drinking water distribution system[J]. Journal of Applied Microbiology, 2016, 120(2): 509-521.
[7] DRISCOLL J A, BRODY S L, KOLLEF M H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections[J]. Drugs, 2007, 63(3): 351-368.
[8] 桑雨同. 危害性分析与关键控制点系统(HACCP)的建立与实施[J]. 肉品卫生, 1999(6): 22-23. SANG Y T. Establishment and implementation of hazard analysis and critical control point system[J]. Journal of Meat Hygiene, 1999(6): 22-23.
[9] 张旭东. 《食品安全国家标准 包装饮用水》(GB 19298—2014)解读[J]. 饮料工业, 2015(2): 73. ZHANG X D. Interpretation of "National Standard for Food Safety Packaged Drinking Water" (GB 19298—2014)[J]. Beverage Industry, 2015(2): 73.
[10] WEI L, WU Q, ZHANG J, et al. Prevalence, virulence, antimicrobial resistance, and molecular characterization of Pseudomonas aeruginosa isolates from drinking water in China[J]. Front Microbiol, 2020, 11: 544653.
[11] 张帆, 李树垚, 张子豪, 等. 铜绿假单胞菌检测方法的比较与优化[J]. 生物技术通报, 2018, 34(3): 67-74. ZHANG F, LI S Y, ZHANG Z H, et al. Comparison and optimization of detection methods for Pseudomonas aeruginosa[J]. Bulletin of Biotechnology, 2018, 34(3): 67-74.
[12] 王文娟, 陈文青, 章明, 等. 包装饮用水中铜绿假单胞菌检测关键技术分析[J]. 中国卫生检验杂志, 2022, 32(14): 1 790-1 792. WANG W J, CHEN W Q, ZHANG M, et al. Analysis of key techniques for detection of Pseudomonas aeruginosa in packaged drinking water[J]. Chinese Journal of Health Laboratory, 2022, 32(14): 1 790-1 792.
[13] PEREIRA F D E S, BONATTO C, LOPES C A P, et al. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces[J]. Microbial Pathogenesis, 2015, 86: 32-37.
[14] 王萍, 朱渊, 乔勇升, 等. 包装饮用水中铜绿假单胞菌4种鉴定方法的比较[J]. 生物加工过程, 2020, 18(3): 397-402, 408. WANG P, ZHU Y, QIAO Y S, et al. Comparison of four methods for identification of Pseudomonas aeruginosa in packaged drinking water[J]. Bioprocessing, 2020, 18(3): 397-402, 408.
[15] 慕妮, 何薛纯, 樊青青, 等. 包装饮用水中铜绿假单胞菌检测方法的比较分析[J]. 生物化工, 2021, 7(6): 151-155. MU N, HE X C, FAN Q Q, et al. Comparative analysis of detection methods for Pseudomonas aeruginosa in packaged drinking water[J]. Biochemistry, 2021, 7(6): 151-155.
[16] 冯秀娟, 高俊峰, 董川. 核酸等温环介导荧光检测法检测包装饮用水中的铜绿假单胞菌[J]. 食品科技, 2023, 48(1): 310-314. FENG X J, GAO J F, DONG C. Detection of Pseudomonas aeruginosa in packaged drinking water by nucleic acid isothermal ring mediated fluorescence detection[J]. Food Science and Technology, 2023, 48(1): 310-314.
[17] GHOSH R, NAGAVARDHINI A, SENGUPTA A, et al. Development of loop-mediated isothermal amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris-wilt pathogen of chickpea[J]. BMC Res Notes, 2015, 8(1): 40.
[18] 吴春明, 李洪涛, 覃慧敏, 等. 建立SYBR Green实时RT-PCR定量方法检测铜绿假单胞菌MexAB-OprM mRNA水平[J]. 中华医院感染学杂志, 2007(11): 1 349-1 352. WU C M, LI H T, QIN H M, et al. A SYBR Green real-time RT-PCR method was established for the determination of Pseudomonas aeruginosa MexAB-levels of OprM mRNA[J]. Chinese Journal of Nosocomiology, 2007(11): 1 349-1 352.
[19] 黄河, 易晓明, 王铁军, 等. 一种铜绿假单胞菌核酸荧光PCR检测试剂盒及检测方法: CN106520984A[P]. 2017-03-22. HUANG H, YI X M, WANG T J, et al. A fluorescence PCR detection kit and detection method for Pseudomonas aeruginosa nucleic acid: CN106520984A[P]. 2017-03-22.
[20] 徐璇, 钟礼立, 张兵, 等. 荧光实时定量PCR检测铜绿假单胞菌方法建立及价值[J]. 中国医师杂志, 2006(12): 1 614-1 617. XU X, ZHONG L L, ZHANG B, et al. Establishment and value of fluorescence real-time quantitative PCR method for detection of Pseudomonas aeruginosa[J]. Chinese Journal of Medical Sciences, 2006(12): 1 614-1 617.
[21] 钟杰. 包装饮用水中铜绿假单胞菌检测[J]. 造纸装备及材料, 2020, 49(3): 227-234. ZHONG J. Detection of Pseudomonas aeruginosa in packaged drinking water[J]. Paper Equipment & Materials, 2020, 49(3): 227-234.
[22] 杨曼琼. 荧光实时定量PCR检测铜绿假单胞菌oprI基因方法学的建立及运用[D]. 长沙: 中南大学, 2007: 1-22. YANG M Q. Establishment and application of fluorescence real-time quantitative PCR method for detecting Pseudomonas aeruginosa oprI gene[D]. Changsha: Central South University, 2007: 1-22.
[23] 韩娜, 彭贤慧, 张婷婷, 等. 一种新的定量16S rRNA基因扩增子测序方法[J]. 生物工程学报, 2020, 36(12): 2 548-2 555. HAN N, PENG X H, ZHANG T T, et al. A novel method for quantitative 16S rRNA gene amplicon sequencing[J]. Chinese Journal of Bioengineering, 2020, 36(12): 2 548-2 555.
[24] ZHANG J Y, DING X, GUAN R, et al. Evaluation of different 16S rRNA gene V regions for exploring bacterial diversity in a eutrophic freshwater lake[J]. Sci Total Environ, 2018, 618: 1 254-1 267.
[25] CHAKRAVORTY S, HELB D, BURDAY M, et al. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria[J]. J Microbiol Methods, 2007, 69(2): 330-339.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.