Abstract
Objective: This study aimed to induce the machine vision technology into the appearance detection of Pleurotus eryngii. Methods: A bilateral filter was proposed to replace Gaussian filter as image smoothing filter, and Ostu maximum inter-class variance method was proposed to replace the improved Canny operator, based on fixed double threshold segmentation, and used as edge detection algorithm. HALCON operator and color space conversion were used to extract the length, diameter, curvature, evenness, color and cap defects of P. erynii, and the development and design of visual software function modules were completed, under the VS 2017 development environment with HALCON 18.05 and C#. Results: 200 pieces of P. eryngii were randomly obtained to test the accuracy of the algorithm and the performance of the visual software. The diameter grading accuracy of the Pleurotus eryngii was 83%, and the remaining characteristic elements could reach more than 95%, with the overall classification accuracy of all specifications more than 90%. Conclusion: The classification of appearance quality of P. eryngii can be completed through the improvement of algorithm and the design of visual software.
Publication Date
10-20-2023
First Page
105
Last Page
111
DOI
10.13652/j.spjx.1003.5788.2022.80907
Recommended Citation
Hao, LIU; Xin-hua, LIN; Ya-nan, ZHU; Zhu, ZHOU; Min, WANG; and Xue-yong, CHEN
(2023)
"Design of appearance quality grading system for apricot mushroom based on machine vision,"
Food and Machinery: Vol. 39:
Iss.
6, Article 17.
DOI: 10.13652/j.spjx.1003.5788.2022.80907
Available at:
https://www.ifoodmm.cn/journal/vol39/iss6/17
References
[1] 黄年来. 一种市场前景看好的珍稀食用菌——杏鲍菇[J]. 中国食用菌, 1998, 17(6): 4-5.
HUANG N L. A rare edible fungus with a good market prospect—Pleurotus eryngii[J]. Edible Fungi of China, 1998, 17(6): 4-5.
[2] RAHMAN M T, FERDOUS S, JENIN M S, et al. Characterization of tea (Camellia sinensis) granules for quality grading using computer vision system[J]. Journal of Agriculture and Food Research, 2021, 6: 100210.
[3] XU P, TAN Q, ZHANG Y P, et al. Research on maize seed classification and recognition based on machine vision and deep learning[J]. Agriculture, 2022, 12(2): 232.
[4] 冯斌, 汪懋华. 基于颜色分形的水果计算机视觉分级技术[J]. 农业工程学报, 2002, 18(2): 141-144.
FENG B, WANG Y H. Computer vision classification of fruit based on fractal color[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(2): 141-144.
[5] 郭峰, 曹其新, 谢国俊, 等. 基于OHTA颜色空间的瓜果轮廓提取方法[J]. 农业机械学报, 2005, 36(11): 119-122.
GUO F, CAO Q X, XIE G J, et al. OHTA color space based method for fruit contour detection[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(11): 119-122.
[6] 王宇杰. 基于机器视觉的水果分级系统设计[J]. 包装工程, 2021, 42(3): 235-239.
WANG Y J. Design of fruit grading packaging system based on machine vision[J]. Packaging Engineering, 2021, 42(3): 235-239.
[7] 弋伟国. 基于机器视觉的枸杞分级分选机控制系统研究[D]. 银川: 宁夏大学, 2016: 5-9.
JI W G. Research on the control system of wolfberry sorting machine based on machine yision[D]. Yinchuan: Ningxia University, 2016: 5-9.
[8] 吴明清. 基于机器视觉红枣体积测量及分级方法研究[D]. 南京: 南京农业大学, 2020: 38-59.
WU M Q. Research on volume measurement and grading methodof red jujube based on machine vision[D]. Nanjing: Nanjing Agricultural University, 2020: 38-59.
[9] 张铮, 王艳萍, 薛桂香. 数字图像处理与机器视觉[M]. 北京: 人民邮电出版社, 2010: 101-232.
ZHANG Y, WANG Y P, XUE G X. Digital image processing and machine vision[M]. Beijing: The People's Post and Telecommunications Press, 2010: 101-232.
[10] 王福斌, 陈波, 沈小伟. 基于Halcon的单目相机标定案例实现[J]. 实验技术与管理, 2021, 38(10): 87-93.
WANG F B, CHEN B, SHEN X W. Realization of monocular camera calibration case based on Halcon[J]. Experimental Technology and Management, 2021, 38(10): 87-93.
[11] 应捷, 陈文, 杨海马, 等. 基于仿射变换与模板匹配的车位识别与计数算法研究[J]. 计算机应用研究, 2022, 39(3): 919-924.
YING J, CHEN W, YANG H M, et al. Research on parking spaces recognition and counting algorithm based on affine transformation and template matching[J]. Application Research of Computers, 2022, 39(3): 919-924.
[12] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
[13] 薛岚燕, 刘杜鹃, 陈艺慧. 基于Canny边缘检测和外观特征的微血管瘤检测方法[J]. 现代电子技术, 2017, 40(6): 103-108.
XUE L Y, LIU D J, CHEN Y H. Microaneurysm detection method based on Canny edge detection and appearance feature[J]. Modern Electronics Technique, 2017, 40(6): 103-108.
[14] 段军, 高翔. 基于统计滤波的自适应双阈值改进canny算子边缘检测算法[J]. 激光杂志, 2015, 36(1): 10-12.
DUAN J, GAO X. Adaptive statistical filtering double threshholds based on improved Canny operator edge detection algorithm[J]. Laser Journal, 2015, 36(1): 10-12.
[15] 李一波, 刘佰仑. 基于改进Canny算子的图像边缘检测算法[J]. 科学技术创新, 2022(2): 93-96.
LI Y B, LIU B L. Improved edge detection algorithm for Canny operator[J]. Science and Technology Innovation, 2022(2): 93-96.
[16] 申嘉锡, 齐华, 王晨. Canny算子对图像边缘检测的一种改进[J]. 现代计算机, 2022, 28(3): 46-49.
SHEN J X, QI H, WANG C. Canny operator's improvement of image edge detection[J]. Modern Computer, 2022, 28(3): 46-49.
[17] LIN Y J, LIU K L, WEI B R, et al. Edge detection of foreign matter suspension image of high voltage transmission line based on improved canny operator[J]. Journal of Physics Conference Series, 2021, 2 087(1): 012091.
[18] 李伟, 胡艳侠, 吕岑. 基于HSV空间的玉米果穗性状的检测[J]. 湖南农业大学学报(自然科学版), 2017, 43(1): 112-116.
LI W, HU Y X, LU C. Traits detection of corn ear based on HSV color space[J]. Journal of Hunan Agricultural University (Natural Sciences), 2017, 43(1): 112-116.
[19] 石坤泉, 魏文国. 基于快速响应分解与颜色空间转换的光学彩色图像无损加密算法[J]. 光学技术, 2018, 44(5): 576-585.
SHI K Q, WEI W G. An optical color image lossless encryption algorithm based on quick response decomposition and color space conversion[J]. Optical Techniqure, 2018, 44(5): 576-585.
[20] 张建敏, 于冬雪. 柑橘叶面病害监测颜色空间改进算法研究[J]. 农机化研究, 2019, 41(6): 38-42, 47.
ZHANG J M, YU D X. Improved algorithm of color space for citrus leaf disease monitoring[J]. Journal of Agricultural Mechanization Research, 2019, 41(6): 38-42, 47.
[21] HERNG O W, NASIR A S A, CHIN O B, et al. Harumanis mango leaves image segmentation on RGB and HSV colour spaces using fast K-means clustering[J]. Journal of Physics: Conference Series, 2021, 2 107(1): 012068.
[22] LAITH E H, SYED A R A H. Automated leaf alignment and partial shape feature extraction for plant leaf classification[J]. ELCVIA: Electronic Letters on Computer Vision and Image Analysis, 2019, 18(1): 37-51.
[23] 廉龙颖, 王希斌, 赵艳芹. WinForm程序设计与实践[M]. 北京: 清华大学出版社, 2019: 108-276.
LIAN L Y, WANG X B, ZHAO Y Q. WinForm program design and practice[M]. Beijing: Tsinghua University Press, 2019: 108-276.