Abstract
Objective: Provide data support for the source tracing and pollution prevention of Pseudomonas aeruginosa in drinking water in Hunan Province. Methods: According to the national food safety standards of GB 8538—2016, the bottled water was tested randomly collected from partial cities and counties in Hunan Province, and the whole genome sequencing and molecular traceability of the 18 strains of Pseudomonas aeruginosa were detected. The carrying of virulence genes and drug resistance genes was detected. Results: It was confirmed that four strains of Pseudomonas aeruginosa showed consistency in terms of geographical distance, genetic distance, pathogenic and drug-resistant genotypes, and it was presumed that there was the same source. Conclusion: The traceability analysis of Pseudomonas aeruginosa in drinking water and the analysis of virulence and drug resistance genes in drinking water can be realized by whole gene sequencing based on 16S rRNA and single-copy orthologous genes.
Publication Date
10-20-2023
First Page
6
Last Page
12,61
DOI
10.13652/j.spjx.1003.5788.2022.60150
Recommended Citation
Kun-peng, GUO; Hai-yun, ZHANG; Juan, HE; Han, GAO; Tao, YANG; and Sheng, SONG
(2023)
"Whole genome analysis and molecular traceability of Pseudomonas aeruginosa in drinking water,"
Food and Machinery: Vol. 39:
Iss.
7, Article 2.
DOI: 10.13652/j.spjx.1003.5788.2022.60150
Available at:
https://www.ifoodmm.cn/journal/vol39/iss7/2
References
[1] 梁小兵, 庄汉澜, 周洁, 等. 铜绿假单胞菌外毒素A的生产、分离纯化和鉴定[J]. 生物技术通讯, 2000, 11(2): 107-114.
LIANG X B, ZHUANG H L, ZHOU J, et al. Production purification and characterization of exotoxin A of Pseudomonas aeruginosa[J]. Letters in Biotechnology, 2000, 11(2): 107-114.
[2] 田国梁, 雷柳冰, 李发俊, 等. 包装饮用水中检出铜绿假单胞菌的同源性分析[J]. 标准科学, 2022(5): 128-134.
TIAN G L, LEI L B, LI F J, et al. Homology analysis of Pseudomonas Aeruginosa detected in packaged drinking water[J]. Standard Science, 2022(5): 128-134.
[3] CRAIG L, FOREST K T, MAIER B. Type IVpili: Dynamics, biophysics and functional consequences[J]. Nat Rev Microbiol, 2019, 17: 429-440.
[4] DE SOUSA T, HBRAUD M, DAPKEVICIUS M L N E, et al. Genomic and metabolic characteristics of the pathogenicity in Pseudomonas aeruginosa[J]. Int J Mol Sci, 2021, 22(23): 12892.
[5] KARASH S, NORDELL R, OZER E A, et al. Genome sequences of two Pseudomonas aeruginosa isolates with defects in type III secretion system gene expression from a chronic ankle wound infection[J]. Microbiol Spectr, 2021, 9: e0034021.
[6] ALATRAKTCHI F A, SVENDSEN W E, MOLIN S. Electrochemical detection ofpyocyanin as a biomarker for Pseudomonas aeruginosa: A focused review[J]. Sensors, 2020, 20: 1-15.
[7] ARMSTRONG S, MERRILL A R. Toward the elucidation of the catalytic mechanism of the mono-ADP-ribosyltransferase activity of Pseudomonas aeruginosa exotoxin A[J]. Biochemistry, 2004, 43(1): 183-194.
[8] LUO Q, JIN S G. Molecular determinants in regulating Pseudomonas aeruginosa type Ⅲ secretion system: A review[J]. Acta Microbiologica Sinica, 2008, 48(10): 1 413-1 417.
[9] 类承斌, 晁艳, 孙相红, 等. 铜绿假单胞菌毒力基因检测及临床意义[J]. 临床检验杂志, 2011, 29(4): 301-303.
LEI C B, CHAO Y, SUN X H, et al. Detection of virulence genes in Pseudomonas aeruginosa and its clinical significance[J]. Journal of Clinical Laboratory, 2011, 29(4): 301-303.
[10] ANDERSSON D J. The biologicl cost of mutational antibiotic resisitance: Anypractical conclusion?[J]. Curr Opin Microbiol, 2006, 9(5): 461-465.
[11] STEVENS T C, OCHOA C D, MORROW K A, et al. The Pseudomonas aeruginosa exoenzyme Y impairs endothelial cell proliferation and vascular repair following lung injury[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(10): L915-L924.
[12] HUGHES K J, EVERISS K D, KOVACH M E, et al. Isolation and characterization of the Vibrio cholerae acfA gene, required for efficient intestinal colonization[J]. Gene, 1995, 156(1): 59-61.
[13] 陆吉虎, 李槿年, 张传亮. 病原弧菌毒素共调菌毛研究进展[J]. 动物医学进展, 2007(8): 55-58.
LU J H, LI J N, ZHANG C L. Advance in toxin coregulated pilus of pathogenic vibrio[J]. Advances in Veterinary Medicine, 2007(8): 55-58.
[14] 李鑫, 张新创, 谢贵林. 百日咳毒素的研究进展[J]. 中国生物制品学杂志, 2018, 31(2): 215-219, 224.
LI X, ZHANG X C, XIE G L. Advances in research of pertussis toxin[J]. Chinese Journal of Biologics, 2018, 31(2): 215-219, 224.
[15] QIN S, XIAO W, ZHOU C,et al. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics[J]. Signal Transduct Target Ther, 2022, 7(1): 199.
[16] 杨清丽. 泛耐药铜绿假单胞菌对β内酰胺类抗生素的耐药机制研究[J]. 世界最新医学信息文摘, 2016, 16(74): 31-32.
YANG Q L. Mechanism of resistance of pan-resistant Pseudomonas aeruginosa to β-lactam antibiotics[J]. World Latest Medical Information Digest, 2016, 16(74): 31-32.
[17] KUIPER E G, DEY D, LAMORE P A, et al. Substrate recognition by the Pseudomonas aeruginosa EF-Tu-modifying methyltransferase EftM[J]. J Biol Chem, 2019 294(52): 20 109-20 121.
[18] VOORHEES R M, RAMAKRISHNAN V. Structural basis of the translational elongation cycle[J]. Annu Rev Biochem, 2013, 82: 203-236.
[19] DIEPPOIS G, DUCRET V, CAILLE O, et al. The transcriptional regulator CzcR modulates antibiotic resistance and quorum sensing in Pseudomonas aeruginosa[J]. PLoS One, 2012, 7(5): e38148.
[20] 梁文, 李博, 董萌萌, 等. 铜绿假单胞菌对碳青霉烯类抗生素耐药机制研究进展[J]. 中国抗生素杂志, 2013, 38(9): 641-646.
LIANG W, LI B, DONG M M, et al. Research progress of carbapenem resistance mechanisms in Pseudomonas aeruginosa[J].Chinese Journal of Antibiotics, 2013, 38(9): 641-646.
[21] JAYARAMAN P, SAKHARKAR K R, DANIEL L C, et al. Hybrid-drug design targeting Pseudomonas aeruginosa dihydropteroate synthase and dihydrofolate reductase[J]. Front Biosci (Elite Ed), 2013, 5(3): 864-882.
[22] 褚海青, 李惠萍, 何国钧. 铜绿假单胞菌的耐药机制[J]. 中国抗感染化疗杂志, 2003(1): 54-57.
CHU H Q, LI H P, HE G J. Drug resistance mechanism of Pseudomonas aeruginosa[J]. Chinese Journal of Anti-Infective Chemotherapy, 2003(1): 54-57.