Abstract
Objective: To solve the problems of low detection accuracy and large number of model parameters in existing tomato maturity detection methods. Methods: Based on the tomato image acquisition system, an improved YOLOv4 model was proposed for automatic detection of tomato maturity. Introducing the lightweight network MobileNetv3 network into the model to replace the CSPParkNet53 network, reducing model complexity. Using average pooling instead of maximum pooling in the SPP module improved the algorithm's detection accuracy for small targets. Introduced attention mechanism CBAM in the upsampling process to enhance the fusion ability of deep and shallow features, and verified the feasibility of the proposed model through experiments. Results: Compared with conventional methods, the experimental method had higher detection mAP values and operational efficiency in tomato maturity detection, and the model parameter quantity was relatively small, the mAP value was 92.50%, the detection speed was 37.1 FPS, and the model parameter quantity was 48 M. Conclusion: This tomato maturity detection method can effectively reduce model parameters and detection time, and has a high detection mAP value.
Publication Date
10-30-2023
First Page
134
Last Page
139
DOI
10.13652/j.spjx.1003.5788.2023.60046
Recommended Citation
Jinrui, LU; Yan, FU; Meiyu, NI; Weigang, CAO; and Zitao, DU
(2023)
"Research on tomato maturity detection method based on improved YOLOv4 model,"
Food and Machinery: Vol. 39:
Iss.
9, Article 21.
DOI: 10.13652/j.spjx.1003.5788.2023.60046
Available at:
https://www.ifoodmm.cn/journal/vol39/iss9/21
References
[1] 刘芳, 刘玉坤, 林森, 等. 基于改进型YOLO的复杂环境下番茄果实快速识别方法[J]. 农业机械学报, 2020, 51(6): 229-237.
LIU F, LIU Y K, LIN S, et al. A fast recognition method for tomato fruits in complex environments based on improved YOLO[J]. Journal of Agricultural Machinery, 2020, 51(6): 229-237.
[2] 项辉宇, 薛真, 冷崇杰, 等. 基于Halcon的苹果品质视觉检测试验研究[J]. 食品与机械, 2016, 32(10): 123-126.
XIANG H Y, XUE Z, LENG C J, et al. Experimental study on visual inspection of apple quality based on Halcon[J]. Food & Machinery, 2016, 32 (10): 123-126.
[3] 杨森, 冯全, 张建华, 等. 基于轻量卷积网络的马铃薯外部缺陷无损分级[J]. 食品科学, 2021, 42(10): 284-289.
YANG S, FENG Q, ZHANG J H, et al. Non-destructive classification of potato external defects based on lightweight convolutional network[J]. Food Science, 2021, 42(10): 284-289.
[4] 张思雨, 张秋菊, 李可. 采用机器视觉与自适应卷积神经网络检测花生仁品质[J]. 农业工程学报, 2020, 36(4): 269-277.
ZHANG S Y, ZHANG Q J, LI K. Using machine vision and adaptive convolutional neural network to detect the quality of peanut kernels[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4): 269-277.
[5] 程磊. 基于改进粒子群算法的苹果表面缺陷检测[J]. 食品与机械, 2018, 34(3): 141-145.
CHENG L. Apple surface defect detection based on improved particle swarm optimization algorithm[J]. Food & Machinery, 2018, 34(3): 141-145.
[6] 张义志, 王瑞, 张伟峰, 等. 高光谱技术检测农产品成熟度研究进展[J]. 湖北农业科学, 2020, 59(12): 5-8, 12.
ZHANG Y Z, WANG R, ZHANG W F, et al. Research progress in hyperspectral technology for detecting the maturity of agricultural products[J]. Hubei Agricultural Science, 2020, 59(12): 5-8, 12.
[7] 黄玉萍, 卢仁富, 戚超, 等. 基于空间可分辨光谱的番茄成熟度判别方法研究[J]. 光谱学与光谱分析, 2018, 38(7): 2 183-2 188.
HUANG Y P, LU R F, QI C, et al. Research on tomato maturity discrimination method based on spatially distinguishable spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2 183-2 188.
[8] 马翠花, 张学平, 李育涛, 等. 基于显著性检测与改进 Hough 变换方法识别未成熟番茄[J]. 农业工程学报, 2016, 32(14): 219-226.
MA C H, ZHANG X P, LI Y T, et al. Recognition of immature tomatoes based on significance detection and improved Hough transform method[J]. Journal of Agricultural Engineering, 2016, 32(14): 219-226.
[9] 王俊平, 徐刚. 机器视觉和电子鼻融合的番茄成熟度检测方法[J]. 食品与机械, 2022, 38(2): 148-152.
WANG J P, XU G. Tomato maturity detection method based on machine vision and electronic nose fusion[J]. Food & Machinery, 2022, 38(2): 148-152.
[10] 龙洁花, 赵春江, 林森, 等. 改进 Mask R-CNN 的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
LONG J H, ZHAO C J, LIN S, et al. Improving Mask R-CNN for tomato fruit segmentation with different maturity levels in a greenhouse environment[J]. Journal of Agricultural Engineering, 2021, 37(18): 100-108.
[11] 周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技, 2021, 38(5): 388-394.
ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Technology, 2021, 38(5): 388-394.
[12] 梅金波, 李涛, 秦寅初. 苹果采摘机器人监测系统和表面缺陷检测方法研究[J]. 计算机测量与控制, 2023, 31(6): 19-26.
MEI J B, LI T, QIN Y C. Research on apple picking robot monitoring system and surface defect detection methods[J]. Computer Measurement and Control, 2023, 31(6): 19-26.
[13] GEETHARAMANI G, PANDIAN J A. Identification of plant leaf diseases using a nine-layer deep convolutional neural network[J]. Computers and Electrical Engineering, 2019, 76: 323-338.
[14] JIA W K, TIAN Y Y, LUO R, et al. Detection and segmentation of overlapped fruits based on optimized Mask R-CNN application in apple harvesting robot[J]. Computers and Electronics in Agriculture, 2020, 172: 1-7.
[15] 孙建桐, 孙意凡, 赵然, 等. 基于几何形态学与迭代随机圆的番茄识别方法[J]. 农业机械学报, 2019, 50(S1): 22-26, 61.
SUN J T, SUN Y F, ZHAO R, et al. Tomato recognition method based on iterative random circle and geometric morphology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 22-26, 61.
[16] 周伟, 徐颖若. 基于PLC和图像处理的水果分类智能控制系统[J]. 农机化研究, 2021, 43(5): 235-239.
ZHOU W, XU Y R. Intelligent control system of fruit classification based on PLC and image processing[J]. Agricultural Mechanization Research, 2021, 43(5): 235-239.
[17] 赵小霞, 李志强. 基于PLC和机器视觉的水果自动分级系统研究[J]. 农机化研究, 2021, 43(8): 75-79.
HAO X X, LI Z Q. Research on automatic fruit grading system based on PLC and machine vision[J]. Agricultural Mechanization Research, 2021, 43(8): 75-79.
[18] 海潮, 赵凤霞, 孙烁. 基于Blob分析的红枣表面缺陷在线检测技术[J]. 食品与机械, 2018, 34(1): 126-129.
HAI C, ZHAO F X, SUN S. On-line detection technology of red jujube surface defects based on Blob analysis[J]. Food & Machinery, 2018, 34(1): 126-129.
[19] 谢忠红, 姬长英, 郭小清, 等. 基于改进 Hough 变换的类圆果实目标检测[J]. 农业工程学报, 2010, 26(7): 157-162.
XIE Z H, JI C Y, GUO X Q, et al. An object detection method for quasi-circular fruits based on improved Hough transform[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(7): 157-162.
[20] 王阳阳, 黄勋, 陈浩, 等. 基于同态滤波和改进K-means的苹果分级算法研究[J]. 食品与机械, 2019, 35(12): 47-51, 112.
WANG Y Y, HUANG X, CHEN H, et al. Apple grading algorithm based on homomorphic filtering and improved K-means[J]. Food & Machinery, 2019, 35(12): 47-51, 112.
[21] 王立扬, 张瑜, 沈群, 等. 基于改进型LeNet-5的苹果自动分级方法[J]. 中国农机化学报, 2020, 41(7): 105-110.
WANG L Y, ZHANG Y, SHEN Q, et al. Automatic apple classification method based on improvedlenet-5[J]. Chinese Journal of Agricultural Mechanochemistry, 2020, 41(7): 105-110.
[22] 于蒙, 李雄, 杨海潮, 等. 基于图像识别的苹果的等级分级研究[J]. 自动化与仪表, 2019, 34(7): 39-43, 47.
YU M, LI X, YANG H C, et al. Apple grading based on image recognition[J]. Automation and Instrumentation, 2019, 34(7): 39-43, 47.
[23] 樊泽泽, 柳倩, 柴洁玮, 等. 基于颜色与果径特征的苹果树果实检测与分级[J]. 计算机工程与科学, 2020, 42(9): 1 599-1 607.
FAN Z Z, LIU Q, CHAI J W, et al. Apple fruit detection and grading based on color and fruit diameter characteristics[J]. Computer Engineering and Science, 2020, 42(9): 1 599-1 607.
[24] 王冉冉, 刘鑫, 尹孟, 等. 面向苹果硬度检测仪的声振信号激励与采集系统设计[J]. 浙江大学学报(农业与生命科学版), 2020, 46(1): 111-118.
WANG R R, LIU X, YIN M, et al. Design of acoustic vibration signal excitation and acquisition system for apple hardness tester[J]. Journal of Zhejiang University (Agriculture and Life Sciences Edition), 2020, 46(1): 111-118.
[25] 杨志锐, 郑宏, 郭中原, 等. 基于网中网卷积神经网络的红枣缺陷检测[J]. 食品与机械, 2020, 36(2): 140-145, 181.
YANG Z R, ZHENG H, GUO Z Y, et al. Defect detection of jujube based on convolutional neural network of net in net[J]. Food & Machinery, 2020, 36(2): 140-145, 181.
[26] 孔维刚, 李文婧, 王秋艳, 等. 基于改进 YOLOv4 算法的轻量化网络设计与实现[J]. 计算机工程, 2022, 48(3): 181-188.
KONG W G, LI W Q, WANG Q Y, et al. Design and implementation of lightweight network based on improved YOLOv4 algorithm[J]. Computer Engineering, 2022, 48(3): 181-188.
[27] 陈伟, 张春雨, 朱超冉. 基于 YOLOv5s算法的番茄成熟度识别研究[J]. 安徽科技学院学报, 2023, 37(1): 92-95.
CHEN W, ZHANG C Y, ZHUO C R. Research on tomato maturity recognition based on YOLOv5s algorithm[J]. Journal of Anhui University of Science and Technology, 2023, 37(1): 92-95.