Abstract
Objective: In order to improve the yield of oryzanol of rice bran. Methods: Rice bran was selected as the research subject, and Saccharomyces cerevisiae and Bacillus subtilis were selected as solid-state fermentation strains through single-factor experiments. The mixed bacterial solid-state fermentation process was optimized by Box-Behnken response surface method combined with the single factor experiments, based on the content of oryzanol. The antioxidant activity of the fermentation extracts was evaluated using DPPH and ABTS free radical scavenging assays. Scanning electron microscopy (SEM) was used to analyze the principle of oryzanol enrichment in mixed bacterial solid-state fermentation. Results: Under the of mixed bacterial treatment of saccharomyces cerevisiae and Bacillus subtilis, the optimal fermentation conditions for rice bran oryzanol was determined to be a fermentation time of 44 h, a fermentation temperature of 34 ℃, an inoculum size of 10%, and a moisture content of 40%. Under these conditions, the oryzanol content was (7.816±0.038) mg/g, which was 1.9 times higher than that of unfermented rice bran. The extracts prepared by mixed bacterial solid-state fermentation exhibited strong DPPH and ABTS free radical scavenging activity, with IC50 values of (0.220±0.007), (0.409±0.014) mg/mL, respectively. These values represented a reduction of 28.6% and 39.7% compared to unfermented rice bran. SEM observation revealed showed that that the surface of rice bran tissue had less oil, a looser and more porous structure after mixed bacterial solid-state fermentation, which was more conducive to the release of rice bran oryzanol. Conclusion: Mixed solid-state fermentation of bacteria significantly increases the oryzanol content and antioxidant activity of rice bran.
Publication Date
10-30-2023
First Page
154
Last Page
161
DOI
10.13652/j.spjx.1003.5788.2023.60104
Recommended Citation
Xinxin, XIA; Hai, LIN; Guliang, YANG; Xia, PENG; and Xinle, HE
(2023)
"Process study on mixed bacterial solid-state fermentation of rice bran for the preparation of oryzanol and evaluation of its antioxidant activity,"
Food and Machinery: Vol. 39:
Iss.
9, Article 24.
DOI: 10.13652/j.spjx.1003.5788.2023.60104
Available at:
https://www.ifoodmm.cn/journal/vol39/iss9/24
References
[1] 魏林. 米糠综合应用研究进展[J]. 粮食加工, 2022, 47(3): 37-39.
WEI L. Research progress on comprehensive application of rice bran[J]. Grain Processing, 2022, 47(3): 37-39.
[2] GUL K, YOUSUF B, SINGH A K, et al. Rice bran: Nutritional values and its emerging potential for development of functional food-a review[J]. Bioactive Carbohydrates and Dietary Fibre, 2015, 6(1): 24-30.
[3] TSUZUKI W, MOGUSHI H, KAWAHARA S, et al. The content and distribution of steryl ferulates in wheat produced in Japan[J]. Bioscience Biotechnology and Biochemistry, 2017, 81(3): 573-580.
[4] WANG L, LIN Q L, YANG T, et al. Oryzanol modifies high fat diet-induced obesity, liver gene expression profile, and inflammation response in mice[J]. Journal of Agricultural and Food Chemistry, 2017, 65(38): 8 374-8 385.
[5] YAN S S, CHEN J H, ZHU L F, et al. Oryzanol alleviates high fat and cholesterol diet-induced hypercholesterolemia associated with the modulation of the gut microbiota in hamsters[J]. Food Function, 2022, 13(8): 4 486-4 501.
[6] XU Z, HUA N, GODBER J S. Antioxidant activity of tocopherols, tocotrienols, and gamma-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride[J]. Journal of Agricultural and Food Chemistry, 2001, 49(4): 2 077-2 081.
[7] XIA X X, LIN H, LUO F J, et al. Oryzanol ameliorates DSS-stimulated gut barrier damage via targeting the gut microbiota accompanied by the TLR4/NF-κB/NLRP3 cascade response in vivo[J]. Journal of Agricultural and Food Chemistry, 2022, 70: 15 747-15 762.
[8] 高琨, 姜平, 谭斌, 等. 稻米及其加工副产物米糠中γ-谷维素研究现状[J]. 粮油食品科技, 2021, 29(5): 91-98.
GAO K, JIANG P, TAN B, et al. Research progress on γ-oryzanol in rice and its processed by-product rice bran[J]. Science and Technology of Cereals, Oils and Foods, 2021, 29(5): 91-98.
[9] 朱云. 弱酸取代法在谷维素提取中的应用[J]. 粮食与食品工业, 2019, 26(4): 41-43.
ZHU Y. Application of weak acid substitution method inoryzanol extraction[J]. Cereal & Food Industry, 2019, 26(4): 41-43.
[10] TRUONG H T, LUU P D, KIYOSHI I, et al. Binary solvent extraction of tocols, gamma-oryzanol, and ferulic acid from rice bran using alkaline treatment combined with ultrasonication[J]. Journal of Agricultural and Food Chemistry, 2017, 65(24): 4 897-4 904.
[11] SOOKWONG P, SUTTIARPOM P, BOONTAKHAM P, et al. Simultaneous quantification of vitamin E, γ-oryzanols and xanthophylls from rice bran essences extracted by supercritical CO2[J]. Food Chemistry, 2016, 211: 140-147.
[12] KUMAR P, YADAV D, KUMAR P, et al. Comparative study on conventional, ultrasonication and microwave assisted extraction of gamma-oryzanol from rice bran[J]. Journal of Food Science and Technology, 2016, 53(4): 2 047-2 053.
[13] 陈嘉序, 傅亚平, 高瑶, 等. 固态生物转化对植物性食品加工副产物生物活性影响的研究进展[J]. 食品与机械, 2020, 36(10): 219-227.
CHEN J X, FU Y P, GAO Y, et al. Research advance on effects of solid-state biotransformation on biological activity of plant food processing by-products[J]. Food & Machinery, 2020, 36(10): 219-227.
[14] 尹孝超, 钱海峰, 王立, 等. 米糠固态发酵工艺优化及其氨基酸变化[J]. 食品与机械, 2017, 33(3): 42-46.
YIN X C, QIAN H F, WANG L, et al. Effect of solid-state fermentation on the ingredients of rice bran[J]. Food & Machinery, 2017, 33(3): 42-46.
[15] 郭利娜. 枯草芽孢杆菌发酵小米糠产抗氧化活性物质的研究[D]. 南京: 南京农业大学, 2015.
GUO L N. Study on antioxidant activity material by Bacillus subtilis fermented millet bran[D]. Nanjing: Nanjing Agricultural University, 2015.
[16] 李伊昕. 基于米糠发酵的富γ-氨基丁酸黄酒的制备及品质分析研究[D]. 武汉: 武汉轻工大学, 2021: 10-22.
LI Y X. Preparation and quality analysis of γ-aminobutyric acid-rich rice wine based on rice bran fermentation[D]. Wuhan: Wuhan Polytechnic University, 2021: 10-22.
[17] 张夏秋, 刘丽娅, 王丽丽, 等. 米根霉发酵米糠工艺优化及其益生活性研究[J]. 核农学报, 2020, 34(10): 280-289.
ZHANG X Q, LIU L Y, WANG L L, et al. Process optimization of rice bran fermentation and study on the probiotic activity of Rhizopus oryzae[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10): 280-289.
[18] 苗圃. 枯草芽孢杆菌固态发酵米糠及其降甘油三酯功能的研究[D]. 南京: 南京农业大学, 2014.
MIAO P. Research on Bacillus subtilis solid-fermentation of rice bran and its function of triglyceride-lowering[D]. Nanjing: Nanjing Agricultural University, 2014.
[19] 杨玉洁. 基于微生物代谢调控的高产γ-谷维素体系构建[D]. 贵阳: 贵州大学, 2019.
YANG Y J. Construction of high-yield γ-oryzanol system based on microbial metabolism regulation[D]. Guiyang: Guizhou University, 2019.
[20] ZHANG D Q, YE Y J, TAN B. Comparative study of solid-state fermentation with different microbial strains on the bioactive compounds and microstructure of brown rice[J]. Food Chemistry, 2022, 397: 133735.
[21] 韦涛, 周启静, 陆兆新, 等. 纳豆芽孢杆菌固态发酵小米糠产抗氧化肽工艺优化[J]. 食品科学, 2017, 38(10): 66-73.
WEI T, ZHOU Q J, LU Z X, et al. Optimization of solid state fermentation conditions for production of antioxidant peptides from millet bran by Bacillus natto[J]. Food Science, 2017, 38(10): 66-73.
[22] 伍蓉, 黄小兰, 何旭峰, 等. 地参发酵酒的挥发性成分分析和体外抗氧化活性研究[J]. 食品工业, 2023, 14(6): 118-123.
WU R, HUANG X L, HE X F, et al. Volatile components analysis and antioxidant activity in vitro of Lycopus lucidus var. hirtus regel fermented wine[J]. The Food Industry, 2023, 14(6): 118-123.
[23] 孙晓明, 辛嘉英, 王艳, 等. 微生物发酵产阿魏酸酯酶及释放阿魏酸研究概述[J]. 食品研究与开发, 2019, 40(1): 201-206.
SUN X M, XIN J Y, WANG Y, et al. Summary on the conditions offerulic acid esterase and ferulic acid production by microorganism fermentation[J]. Food Research and Development, 2019, 40(1): 201-206.
[24] 陈如扬, 樊子依, 潘一玲, 等. 冠突散囊菌对植物酚类物质的生物转化及生物活性的影响[J]. 食品研究与开发, 2022, 43(8): 193-201.
CHEN R Y, PAN Z Y, PAN Y L, et al. Eurotium cristatum biotransformation plant phenolic compounds and affects their biological activities: A review[J]. Food Research and Development, 2022, 43(8): 193-201.
[25] 曾亚桐, 张怡, 朱秋菊, 等. 枯草芽孢杆菌与产朊假丝酵母发酵豆粕的酶活力测定[J]. 天津科技, 2018, 45(6): 54-57, 62.
ZENG Y T, ZHANG Y, ZHU Q J, et al. Determination of enzyme activities from Bacillus subtilis and Candida Nguyen fermentation soybean meal[J]. Tianjin Science & Technology, 2018, 45(6): 54-57, 62.
[26] 郑自强, 卫春会, 邓杰, 等. 一株产纤维素酶枯草芽孢杆菌的麸曲制作及其产酶特性研究[J]. 食品与机械, 2021, 37(10): 12-17.
ZHENG Z Q, WEI C H, DENG J, et al. Study on the production of Fuqu and the characteristics of enzyme about a cellulase producing Bacillus subtilis[J]. Food & Machinery, 2021, 37(10): 12-17.
[27] 金爽, 白雪, 任裕斌, 等. 固载微生物菌群发酵槐角对染料木素含量及抗氧化活性的影响[J]. 山西医科大学学报, 2023, 54(3): 370-376.
JIN S, BAI X, REN Y B, et al. Effect of Fructus Sophorae fermentation by immobilized microbial flora on genistein content and antioxidant activity[J]. Journal of Shanxi Medical University, 2023, 54(3): 370-376.
[28] 冯海燕. 枯草芽袍杆菌XZI125改善米糠的功能活性成分并提高其营养价值的研究[D]. 南京: 南京农业大学, 2012: 52.
FENG H Y. Using Bacillus subtilis XZI125 to improve functional components and nutritional value of rice bran[D]. Nanjing: Nanjing Agricultural University, 2012: 52.
[29] LE B, ANH P T N, KIM J E, et al. Rice bran fermentation by lactic acid bacteria to enhance antioxidant activities and increase theferulic acid, ρ-coumaric acid, and γ-oryzanol content[J]. Journal of Applied Biological Chemistry, 2019, 62(3): 257-264.
[30] 刘燕. 双菌发酵燕麦改善多酚抗氧化活性及其体外消化特性[D]. 广州: 华南理工大学, 2023: 51-55.
LIU Y. Improving phenolic bioactivity in double-strain fermented oats and their characteristics in vitro digestion[D]. Guangzhou: South China University of Technology, 2023: 51-55.