•  
  •  
 

Corresponding Author(s)

常凯(1975—),男,北华大学副教授,硕士。E-mail:532029059@qq.com

Abstract

Objective: The structure of CLPS1 (polysaccharide fraction 1 of Codonopsis lanceolata) was determined to provide a basis for the study of polysaccharide activity of C. lanceolata and the development of natural plant polysaccharides. Methods: After extraction, separation, and purification, the separation component CLPS1 was determined by gas chromatography, infrared spectroscopy, nuclear magnetic resonance, periodate oxidation, Smith degradation, and methylation analysis to determine the structure of CLPS1. Results: The specific rotation of CLPS1 is +44°, the content of the total polysaccharide is 97.6%, the uronic acid of CLPS1 is 13.18%, and the molecular weight of CLPS1 is 91.7. The monosaccharide component of CLPS1 contains Ara, Gal, Glc, GalA, The molar ratio is 2.7∶3.4∶2.3∶1.1∶0.5. Chemical composition and structure of polysaccharide CLPS1 was studied by infrared spectrum, NMR, partial hydrolysis with acid degradation, Smith, methylation and GC-MS. The results showed that monosaccharide compositions of CLPS1 contained GluA and pyranose, while pyranose included both α-pyranoside and β-pyranoside in structure. The backbone was composed of Ara and Gal, the brancd with Gal and the terminal residues of backbone with Glu. Branch point of Gal residues is linked by Glc (1→4,6); Gal (1→3,6); Gal contains 1→,1→3,1→4,1→6,1→3,6; Gal contains 1→, 1→3, 1→4, 1→6, 1→3, 6; Glc contains 1→,1→4,1→4,6; Ara contains 1→5; Galacturonic acid 1→3. Conclusion: CLPS1 is a complex acidic polysaccharide. The structure analysis of C. lanceolata polysaccharides is the basis for studying the structure-activity relationship of C. lanceolata polysaccharides, which is of great significance for understanding the biological activity and mechanism of C. lanceolata polysaccharides.

Publication Date

10-30-2023

First Page

162

Last Page

168,240

DOI

10.13652/j.spjx.1003.5788.2023.80573

References

[1] KIM J Y, HWANG B S, KWON S H, et al. Various biological activities of extracts from deodeok (Codonopsis lanceolata Trautv.) buds[J]. Journal of the Korean Society of Food Science and Nutrition, 2021(1): 10-15.
[2] 赵传彦. 羊乳的价值及市场前景[J]. 特种经济动植物, 2004, 7(1): 35. ZHAO C Y. The value and market prospect of goat milk[J]. Special Economic Animals and Plants. 2004, 7(1): 35.
[3] 于巧宁. 基于位点特异性PCR技术对北沙参及其产品植物来源的分子鉴定[D]. 烟台: 烟台大学, 2022: 1-4. YU Q N. Botanical origin identification of glehnia littoralis and its products based on allele-specific PCR[D]. Yantai: Yantai University, 2022: 1-4.
[4] WEON J, EOM M R, JUNG Y S, et al. Steamed and fermented ethanolic extract from Codonopsis lanceolata attenuates amyloid-β-induced memory impairment in mice[J]. Evidence-Based complemtntary and Alternative medicine, 2016, 5(23): 1-9.
[5] 张艳英, 王晓刚, 支晓慧. 轮叶党参总皂苷对糖尿病大鼠心肌组织MDA、TNF-ɑ、sICAM-1及sVCAM-1表达的影响[J]. 中国现代医药杂志, 2021, 23(7): 19-21. ZHANG Y Y, WANG X G, ZHI X H. Effect of total saponins of Codonopsis lanceolata on the expression of MDA, TNF-ɑ, sVCAM-1 and sVCAM-1 in myocardium of diabetic rats[J]. Modern Medicine Journal of China, 2021, 23(7): 19-21.
[6] 张馨方, 程孟雅, 杨桥, 等. 红汁乳菇多糖的结构特征及对肠道菌群的影响[J]. 食品与机械, 2022, 38(5): 143-148. ZHANG X F, CHENG M Y, YANG Q, et al. Structural characteristics of polysaccharides from Lactarius hatsudake and its effect on intestinal flora[J]. Food & Machinery, 2022, 38(5): 143-148.
[7] 佟海滨. 锦灯笼水溶性多糖的结构及其降血糖活性研究[D]. 长春: 东北师范大学, 2007: 1-5. TONG H B. Structural characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Physalis alkekengi L.[D]. Changchun: Northeast Normal University, 2007: 1-5.
[8] 王颖, 包永睿, 孟宪生, 等. 云芝多糖对小鼠脾细胞的免疫增强作用研究[J]. 中南药学, 2017, 15(3): 284-287. WANG Y, BAO Y R, MENG X S, et al. Activation of spleen cells by Coriolus versicolor polysaccharide[J]. Central South Pharmacy, 2017, 15(3): 284-287.
[9] 鲍智娟. 轮叶党参多糖提取及其含量测定[J]. 延边大学学报(自然科学版), 2009, 35(4): 350-352. BAO Z J. The extractionand content determination of polysaccharide from Codonopsis Lanceolata[J]. Journal of Yanbian University (Natural Science), 2017, 15(3): 284-287.
[10] 韩春姬, 李铉万, 李莲姬, 等. 轮叶党参多糖对小鼠S180肉瘤的抑制作用[J]. 延边大学医学学报, 2000(4): 249-250. HAN C J, LI X W, LI L J, et al. The extraction and content determination of polysaccharide from codonopsis lanceolata[J]. Journal of Medical Science Yanbian University, 2000(4): 249-250.
[11] 张梁, 杨学秋, 刘秀杰, 等. 超声波提取轮叶党参多糖工艺优化及抗氧化活性[J]. 北华大学学报(自然科学版), 2018, 19(3): 312-318. ZHANG L, YANG X Q, LIU X J, et al. Optimization of ultrasonic extraction conditions for polysaccharides from Codonopsis lanceolata and its antioxidative activity[J]. Journal of Beihua University (Natural Science), 2018, 19(3): 312-318.
[12] 刘艳秋. 轮叶党参多糖的分离纯化、结构分析及其生物活性研究[D]. 吉林: 东北林业大学, 2018. LIU Y Q. Isolation Purification, Structure identification and biological activities of Polysaccharide from Codonopsis lanceolata[D]. Jilin: Northeast Forestry University, 2018.
[13] 刘洋. 黑果枸杞叶多糖的分离纯化、分析鉴定及生物活性研究[D]. 西安: 西北大学, 2016: 15-25. LIU Y. Study on extraction, purification, characterization and biological activity of polysaccharides from lycium ruthenicum leaves[D]. Xi'an: Northwest University, 2016: 15-25.
[14] LEHRFELD J. Simultaneous gas-liquid chromatographic determination of aldonic acids and aldoses[J]. Analysis Chemistry, 1985, 57: 346-348.
[15] 何宇愿. 狗肝菜多糖的分离纯化、结构解析及保肝活性研究[D]. 广州: 广东药学院, 2016: 29-36. HE Y Y. Isolation, purification, structure characterization and hepatoprotective effect of polysaccharides from dicliptera chinensis[D]. Guangzhou: Guangdong Pharmaceutical University, 2016: 29-36.
[16] BUCHANAN C M, HYATT J A, LOWMAN D W. 2D-NMR of polysaccharides: Spectral assignments of cellulose triesters[J]. Macromolecules, 1987, 20(11): 2 750-2 754.
[17] WANG X M, SUN R G, ZHANG J, et al. Structure and antioxidant activity of polysaccharide POJ-U1a extracted by ultrasound from ophiopogon japonicus[J]. Fitoterapia, 2012, 83: 1 567-1 584.
[18] 陈春丽. 哈萨克药材别克参多糖分离纯化、抗炎免疫活性及药材质量标准研究[D]. 乌鲁木齐: 新疆医科大学, 2012: 29-30. CHEN C L. Studies on the Structure, immunomodulatory and anti-inflammatory activities of Erythronium sibiricum bulb polysaccharides and Erythronium sibiricum bulb's Quality Standard[D]. Urumqi: Xinjiang medical University, 2012: 29-30.
[19] 李楠, 张香飞, 杨春杰. 板枣多糖初级结构表征及抗氧化活性[J]. 食品与机械, 2022, 38(10): 24-28, 49. LI N, ZHANG X F, YANG C J. Primary structure characterization and antioxidant activity of polysaccharide from Zizyphus jujuba cv. Banzao[J]. Food & Machinery, 2022, 38(10): 24-28, 49.
[20] 罗建蓉, 王诗雨, 蒋丽珠, 等. 琵琶甲多糖的提取分离、结构表征及生物活性研究[J]. 中国现代应用药学, 2023, 40(8): 1 057-1 063. LUO J R, WANG S Y, JIANG L Z, et al. Study on the extraction, separation, structural characterization and biological activities of polysaccharides from blaps rynchopetera fairmaire[J]. Chinese Journal of Modern Drug Application, 2023, 40(8): 1 057-1 063.
[21] 龚雯, 唐婕, 韦雅渊, 等. 金花茶多糖分离纯化、结构表征及其体外抗氧化性[J]. 食品与机械, 2021, 37(6): 184-190. GONG W, TANG J, WEI Y Y, et al. Isolation, purification, structural characterization of polysaccharide from camellia nitidissima chi and its antioxidant actvities in vitro[J]. Food & Machinery, 2021, 37(6): 184-190.
[22] 杭书扬, 杨留枝, 史苗苗, 等. 山药皮残渣多糖结构表征及抗氧化活性测定[J]. 食品与机械, 2023, 39(2): 153-158, 206. HANG S Y, YANG L Z, SHI M M, et al. Characterization and antioxidant activity determination of polysaccharide from yam peel residue[J]. Food & Machinery, 2023, 39(2): 153-158, 206.
[23] HU M, CUI N, BO Z X, et al. Structural determinant and its underling molecular mechanism of STPC2 related to anti-angiogenic activity[J]. Marime Drugs, 2017, 15(2): 1-12.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.