•  
  •  
 

Authors

XU Xia, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China;Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, Zhejiang 310014, China;National R & D Branch Center for Pelagic Aquatic Products Processing 〔Hangzhou〕, Hangzhou, Zhejiang 310014, China
XU Mengyi, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China;Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, Zhejiang 310014, China;National R & D Branch Center for Pelagic Aquatic Products Processing 〔Hangzhou〕, Hangzhou, Zhejiang 310014, China
YU Zhou, Aquatic Product Warehousing Transshipment Company, Zhoushan, Zhejiang 316102, China
ZHOU Xuxia, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China;Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, Zhejiang 310014, China;National R & D Branch Center for Pelagic Aquatic Products Processing 〔Hangzhou〕, Hangzhou, Zhejiang 310014, China
DING Yuting, College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China;Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, Zhejiang 310014, China;National R & D Branch Center for Pelagic Aquatic Products Processing 〔Hangzhou〕, Hangzhou, Zhejiang 310014, ChinaFollow

Corresponding Author(s)

丁玉庭(1963—),男,浙江工业大学教授,博士。E-mail: dingyt@zjut.edu.cn

Abstract

The secondary refrigerant is an intermediate medium for transferring cold capacity, which can improved refrigeration efficiency. In this paper, the classification and characteristics of secondary refrigerants are introduced, and discusses the flow characteristics of secondary refrigerants and the apparent viscosity changes and flow resistance characteristics during the flow of secondary refrigerants. In addition, the application of different types of secondary refrigerants in aquatic product preservation and storage system is also discussed, among which non-phase change secondary refrigerant is mainly used in food impregnation and freezing. The phase change material refrigerant is mainly used in cold storage and refrigerating truck of aquatic product storage and transportation, and the future development direction of secondary refrigerant is prospected.

Publication Date

10-30-2023

First Page

201

Last Page

208,233

DOI

10.13652/j.spjx.1003.5788.2022.80992

References

[1] 马进, 尹从绪. 国内安监与环保政策下冷冻冷藏行业制冷系统的技术选择[J]. 冷藏技术, 2018, 41(2): 8-12. MA J, YIN C X. Technical choice of refrigeration system in cold chain industry under the framework of domestic work safety and environmental protection policy[J]. Refrigeration Technology, 2018, 41(2): 8-12.
[2] WANG K, EISELE M, HWANG Y, et al. Review of secondary loop refrigeration systems[J]. International Journal of Refrigeration, 2010, 33(2): 212-234.
[3] ZHAO Y, ZHANG X L. Application and research progress of cold storage technology in cold chain transportation and distribution[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 1 419-1 434.
[4] FAN Y, DE KLEUVER C, DE LEEUW S, et al. Trading off cost, emission, and quality in cold chain design: A simulation approach[J]. Computers & Industrial Engineering, 2021, 158: 107442.
[5] 徐旻晟, 谢晶晶, 王金锋. 基于虚拟仪器技术的渔船超低温冷库制冷监控系统研究[J]. 食品与机械, 2017, 33(1): 122-127. XU M S, XIE J J, WANG J F. Refrigeration monitoring system of ultra low temperature cold storage on fishing boat based on virtual instruments[J]. Food & Machinery, 2017, 33(1): 122-127.
[6] LUCAS T, RAOULT-WACK A L. Immersion chilling and freezing: Phase change and mass transfer in model food[J]. Journal of Food Science, 1996, 61(1): 127-132.
[7] SHI Z J, ZHONG S Y, YAN W J, et al. The effects of ultrasonic treatment on the freezing rate, physicochemical quality, and microstructure of the back muscle of grass carp (Ctenopharyngodon idella)[J]. LWT, 2019, 111: 301-308.
[8] 韩光赫. 直接浸渍冷冻载冷剂组成、传递特性及应用研究[D]. 广州: 华南理工大学, 2010: 31-32. HAN G H. Direct impregnation freeze-carrying agent composition, transport characteristics and application research[D]. Guangzhou: South China University of Technology, 2010: 31-32.
[9] LUCAS T, RAOULT-WACK A L. Immersion chilling and freezing in aqueous refrigerating media: review and future trends[J]. International Journal of Refrigeration, 1998, 21(6): 419-429.
[10] 辛美丽. 三元载冷剂性能及草鱼块浸渍冻结研究[D]. 广州: 华南理工大学, 2012. XIN M L. Research on the performance of ternary refrigerant and the impregnation and freezing of grass carp pieces[D]. Guangzhou: South China University of Technology, 2012.
[11] 马晓斌, 林婉玲, 杨贤庆, 等. 浸渍式快速冷冻液的优化及冻结技术对脆肉鲩品质的影响[J]. 食品工业科技, 2014, 35(18): 338-341, 346. MA X B, LIN W L, YANG X Q, et al. Optimization of immersion solution for quick freezing and the effect of freezing technology on the quality characteristics of crisp grass carp[J]. Science and Technology of Food Industry, 2014, 35(18): 338-341, 346.
[12] 曾庆孝, 倪明龙, 朱志伟, 等. 四元载冷剂冻结明胶模型过程中溶质的扩散性[J]. 华南理工大学学报(自然科学版), 2010, 38(12): 115-119. ZENG Q X, NI M L, ZHU Z W, et al. Diffusion of solutes during the freezing gelatin model of quaternary refrigerant[J]. Journal of South China University of Technology (Natural Science Edition), 2010, 38(12): 115-119.
[13] LIU Q, SUN Z, WANG Q, et al. Influence of secondary fluid on the performance of indirect refrigeration system[J]. Applied Thermal Engineering, 2021, 197: 117388.
[14] SEBASTIANO T, GIOVANNI D N, KOHEI M, et al. Solid-liquid equilibria of binary systems containing low global warming potential refrigerants[J]. International Journal of Refrigeration, 2022, 144: 254-263.
[15] NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: A review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523.
[16] NDOYE F T, SCHALBART P, LEDUCQ D, et al. Numerical study of energy performance of nanofluids used in secondary loops of refrigeration systems[J]. International Journal of Refrigeration, 2015, 52: 122-132.
[17] 陈锡良, 苏超, 宋喆. 低粘度超低温双向宽温载冷剂: 201410593257.2[P]. 2017-07-04. CHEN X L, SU C, SONG Z. Low viscosity ultra-low temperature bidirectional wide temperature refrigerant: 201410593257.2[P]. 2017-07-04.
[18] TORRES-DE MARIA G, ABRIL J, CASP A. Surface heat transfer coefficients for refrigeration and freezing of foods immersed in an ice slurry[J]. International Journal of Refrigeration, 2005, 28: 1 040-1 047.
[19] HUANG X, WANG L T, SONG Y F, et al. Effect of Al2O3 nanoparticles on the corrosion behavior of aluminum alloy in simulated vehicle coolant[J]. Journal of Alloys and Compounds, 2021, 874: 159807.
[20] SHAIKH N I, PRABHU V. Mathematical modeling and simulation of cryogenic tunnel freezers[J]. Journal of Food Engineering, 2007, 80(2): 701-710.
[21] TARN M D, SIKORA S N F, PORTER G C E, et al. Homogeneous freezing of water using microfluidics[J]. Micromachines, 2021, 12(2): 223.
[22] 刘田, 张皆慰. 铝黄铜换热管在氯化钙载冷剂中的应用分析[J]. 低温与特气, 2017, 35(2): 43-47. LIU T, ZAHNG J W. Application analysis of aluminum-brass heat exchange tube in calcium chloride carrier coolant[J]. Low Temperature and Special Gas, 2017, 35(2): 43-47.
[23] WANG J, REN F, HUANG H, et al. Effect of CaCl2 pre-treatment on the succinylation of potato starch[J]. Food Chemistry, 2019, 288: 291-296.
[24] SUWONO A, INDARTONO Y S, IRSYAD M, et al. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption[C]// IOP Conference Series: Materials Science and Engineering. America: IOP Publishing, 2015: 69-70.
[25] 何洪, 常满倩, 宋洪波. 寡糖金属螯合物的研究进展[J]. 食品与机械, 2017, 33(10): 205-208, 220. HE H, CHANG M Q, SONG H B. Research progress in the studies of oligosaccharides metal complex[J]. Food & Machinery, 2017, 33(10): 205-208, 220.
[26] 申兵建, 张雁斌, 关朋. 对某乙二醇制冷系统运行工况及控制方案的分析[J]. 冷藏技术, 2016(1): 50-53. SHEN B J, ZAHNG Y B, GUAN P. Analysis of operating condition and control plan about ethylene glycol refrigeration system[J]. Refrigeration Technology, 2016(1): 50-53.
[27] AMINYAVARI M, NAJAFI B, SHIRAZI A, et al. Exergetic, economic and environmental (3E) analyses, and multi-objective optimization of a CO2/NH3 cascade refrigeration system[J]. Applied Thermal Engineering, 2014, 65(1): 42-50.
[28] BANSAL P. A review-Status of CO2 as a low temperature refrigerant: Fundamentals and R&D opportunities[J]. Applied Thermal Engineering, 2012, 41: 18-29.
[29] LUCAS T, FRANCOIS J, BOHUON P, et al. Factors influencing mass transfer during immersion cold storage of apples in NaCl/sucrose solutions[J]. LWT-Food Science and Technology, 1999, 32(6): 327-332.
[30] ZHANG P, MA Z W. An overview of fundamental studies and applications of phase change material slurries to secondary loop refrigeration and air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 5 021-5 058.
[31] SAID M A, HASSAN H. Parametric study on the effect of using cold thermal storage energy of phase change material on the performance of air-conditioning unit[J]. Applied Energy, 2018, 230: 1 380-1 402.
[32] LU L, SUN Z. Ice slurry formation and ice crystal growth by using paraffin microemulsion[J]. International Journal of Refrigeration, 2021, 130: 434-440.
[33] 高蕊笑, 张庆钢, 王艺, 等. 冰浆的研究现状与发展趋势[J]. 制冷技术, 2019, 39(5): 65-71. GAO X X, ZHANG Q G, WANG Y, et al. Research status and development trend of ice slurry[J]. Chinese Journal of Refrigeration Technology, 2019, 39(5): 65-71.
[34] ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: Materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120.
[35] ZHAO L, YU Q F, LI M, et al. A review of the innovative application of phase change materials to cold-chain logistics for agricultural product storage[J]. Journal of Molecular Liquids, 2022, 365: 120088.
[36] 曹腊春. LM-4型冰河冷媒在季戊四醇装置的运用评价[J]. 云南化工, 2015, 42(5): 69-70. CAO L C. Evaluation of LM-4 glacial refrigerant in pentaerythritol device[J]. Yunnan Chemical Technology, 2015, 42(5): 69-70.
[37] 韩光赫, 陈斌, 曾庆孝, 等. 乙醇、丙二醇、氯化钠与水构成载冷剂溶液的组成对粘度的影响[J]. 现代食品科技, 2010, 26(5): 459-462. HAN G H, CHEN B, ZENG Q X, et al. Effects of the proportion of ethanol, propylene glycol, salt and water on the viscosity of secondary refrigerant[J]. Modern Food Science and Technology, 2010, 26(5): 459-462.
[38] FREI B, EGOLF P W. Viscometry applied to the Bingham substance ice slurry[J]. International Institute of Refrigeration, 2000, 14(2): 48-60.
[39] THOMAS D G. Transport characteristics of suspensions: Application of different rheological models to flocculated suspension data[M]// Progress in International Research on Thermodynamic and Transport Properties. England: Academic Press, 1962: 704-717.
[40] DARBOURET M, COURNIL M, HERRI J M. Rheological study of TBAB hydrate slurries as secondary two-phase refrigerants[J]. International Journal of Refrigeration, 2005, 28(5): 663-671.
[41] QIN Y, AMAN Z M, PICKERING P F, et al. High pressure rheological measurements of gas hydrate-in-oil slurries[J]. Journal of Non-Newtonian Fluid Mechanics, 2017, 248: 40-49.
[42] 韩立超. 乙二醇载冷剂水力特性研究[D]. 天津: 天津商业大学, 2017: 87-88. HAN L C. Study on hydraulic characteristics of ethylene glycol refrigerant[D]. Tianjin: Tianjin University of Commerce, 2017:87-88.
[43] 白晓宁, 胡寿根. 浆体管道的阻力特性及其影响因素分析[J]. 流体机械, 2000(11): 26-29, 11-3. BAI X N, HU S G. Analysis of resistance characteristics and influencing factors of slurry pipelines[J]. Fluid Machinery, 2000(11): 26-29, 11-3.
[44] 郑志, 王树立, 武玉宪. NGH浆体管道的阻力特性及其摩阻损失的计算[J]. 石油规划设计, 2010, 21(2): 30-33, 49. ZHENG Z, WANG S L, WU Y X. Calculation of resistance characteristics of NGH slurry pipelines and their friction losses[J]. Oil Planning and Design, 2010, 21(2): 30-33, 49.
[45] 王继红, 张腾飞, 王树刚, 等. 竖直管道内冰浆流体流动特性的数值模拟[J]. 制冷学报, 2012, 33(2): 42-46. WANG J H, ZAHNG T F, WNAG S G, et al. Numerical simulation of ice slurry flow in a vertical pipe[J]. Journal of Refrigeration, 2012, 33(2): 42-46.
[46] WANG J, WANG S, ZHANG T, et al. Mathematical and experimental investigation on pressure drop of heterogeneous ice slurry flow in horizontal pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108: 2 381-2 392.
[47] XU D, LIU Z, CAI L, et al. A CFD-PBM approach for modeling ice slurry flow in horizontal pipes[J]. Chemical Engineering Science, 2018, 176: 546-559.
[48] KUMANO H, MIZUI A, HIGASHI N. Flow characteristics of ice slurry in a horizontal tube during solidification[J]. International Journal of Refrigeration, 2018, 85: 184-190.
[49] PROSKURIN A. Linear stability of flow in a 90° bend[J]. Physics of Fluids, 2022, 34(3): 034111.
[50] CHEN L, KOH C A, SUN B. Insight into the plugging mechanism in water-continuous hydrate slurries[J]. Fuel, 2022, 316: 123360.
[51] MORIMOTO T, KOMATSU W, KIMATA H, et al. Solidification behavior of an ice slurry flowing in a rectangular channel[J]. International Journal of Refrigeration, 2021, 131: 129-136.
[52] 郑志. 水合物浆体管输摩阻计算及影响因素分析[J]. 天然气技术, 2010, 4(6): 61-63, 80. ZHENG Z. Calculation of friction resistance and influencing factors of hydrate slurry tube[J]. Natural Gas Technology, 2010, 4(6): 61-63, 80.
[53] KALAISELVAM S, KARTHIK P, RANJIT PRAKASH S. Numerical investigation of heat transfer and pressure drop characteristics of tube-fin heat exchangers in ice slurry HVAC system[J]. Applied Thermal Engineering, 2009, 29(8): 1 831-1 839.
[54] WANG W, FAN S, LIANG D, et al. Experimental study on flow characteristics of tetrahydrofuran hydrate slurry in pipelines[J]. Journal of Natural Gas Chemistry, 2010, 19(3): 318-322.
[55] DORON P, BARNEA D. Flow pattern maps for solid-liquid flow in pipes[J]. International Journal of Multiphase Flow, 1996, 22(2): 273-283.
[56] BALAKIN B V, HOFFMANN A C, KOSINSKI P, et al. Turbulent flow of hydrates in a pipeline of complex configuration[J]. Chemical Engineering Science, 2010, 65(17): 5 007-5 017.
[57] SHEN X D, HOU G D, DING J X, et al. Flow characteristics of methane hydrate slurry in the transition region in a high-pressure flow loop[J]. Journal of Natural Gas Science and Engineering, 2018, 55: 64-73.
[58] KITANOVSKI A, VUARNOZ D, ATA-CAESAR D, et al. The fluid dynamics of ice slurry[J]. International Journal of Refrigeration, 2005, 28(1): 37-50.
[59] DHIVYA S, HUSSAIN S I, JEYA SHEELA S, et al. Experimental study on microcapsules of Ag doped ZnO nanomaterials enhanced Oleic-Myristic acid eutectic PCM for thermal energy storage[J]. Thermochimica Acta, 2019, 671: 70-82.
[60] 赵茜, 李学鹏, 王金厢, 等. 低温液态速冻技术及其在水产品加工中应用研究进展[J]. 食品与机械, 2020, 36(12): 189-193, 217. ZHAO Q, LI X P, WNAG J X, et al. Research progress of cryogenic liquid quick-freezing and its application in the processing of aquatic products[J]. Food & Machinery, 2020, 36(12): 189-193, 217.
[61] CHEN Z, WANG Q, ZHANG H, et al. Hyperspectral imaging (HSI) technology for the non-destructive freshness assessment of pearl gentian grouper under different storage conditions[J]. Sensors, 2021, 21(2): 583.
[62] 张艳霞, 谢成民, 周纷, 等. 包装方式对养殖大黄鱼冻藏品质的影响[J]. 食品与机械, 2019, 35(8): 121-126, 160. ZHANG Y X, XIE C M, ZHOU F, et al. Effects of different packaging methods on the quality changes of frozen large yellow croaker (Pseudosciaena crocea)[J]. Food & Machinery, 2019, 35(8): 121-126, 160.
[63] WANG Y, MIYAZAKI R, SAITOU S, et al. The effect of ice crystals formations on the flesh quality of frozen horse mackerel (Trachurus japonicus)[J]. Journal of Texture Studies, 2018, 49(5): 485-491.
[64] LIU S, ZENG X, ZHANG Z, et al. Effects of immersion freezing on ice crystal formation and the protein properties of snakehead (Channa argus)[J]. Foods, 2020, 9(4): 411.
[65] DIAO Y, CHENG X, WANG L, et al. Effects of immersion freezing methods on water holding capacity, ice crystals and water migration in grass carp during frozen storage[J]. International Journal of Refrigeration, 2021, 131: 581-591.
[66] 史咏梅, 李勇勇, 吴迪迪, 等. 不同冻结方式对南美白对虾品质的影响[J]. 食品与发酵工业, 2019, 45(5): 94-100. SHI Y M, LI Y Y,WU D D, et al. Effects of different freezing methods on the quality of vannamei shrimp[J]. Food and Fermentation Industry, 2019, 45(5): 94-100.
[67] 林婉玲, 杨贤庆, 侯彩玲, 等. 浸渍冻结对凡纳滨对虾冻藏过程中品质的影响[J]. 食品科学, 2014, 35(10): 223-229. LIN W L, YANG X Q, HOU C L, et al. Effect of immersion chilling and freezing on quality of Litopenaeus vannamei during frozen storage[J]. Food Science, 2014, 35(10): 223-229.
[68] LIU J, WANG Y, ZHU F, et al. The effects of freezing under a high-voltage electrostatic field on ice crystals formation, physicochemical indices, and bacterial communities of shrimp (Solenocera melantho)[J]. Food Control, 2022, 142: 109238.
[69] 陈海强, 梁钻好, 梁凤雪, 等. 不同冻结方式对牡蛎品质的影响[J]. 食品工业科技, 2019, 40(7): 243-247. CHEN H Q, LIANG Z H, LIANG F X, et al. Effects of different freezing methods on the quality of Oyster[J]. Science and Technology of Food Industry, 2019, 40(7): 243-247.
[70] 梁钻好, 陈海强, 梁凤雪, 等. 液浸速冻对牡蛎水分迁移及品质的影响[J]. 食品科学, 2019, 40(23): 233-238. LIANG Z H, CHEN H Q, LIANG F X, et al. Impact of immersion freezing on Oyster quality and water migration[J]. Food Science, 2019, 40(23): 233-238.
[71] 黄刚, 娄永江, 王春琳. 低温液体速冻对软壳三疣梭子蟹冻藏期间肌肉生化特性的影响[J]. 食品工业科技, 2014, 35(11): 328-331, 358. HUANG G, LOU Y J, WANG C L. Effect of cryogenic liquid quick-freezing on the biochemical properties of soft shell swimming crab (Portunus trituberculatus) muscle during frozen storage[J]. Science and Technology of Food Industry, 2014, 35(11): 328-331, 358.
[72] 张涛. 石斑鱼液体速冻保鲜加工技术及对鱼肉品质的影响[D]. 上海: 上海海洋大学, 2019: 64-65. ZHANG T. Fresh-keeping processing technology of grouper by liquid quick-freezing and its effect on meat quality[D]. Shanghai: Shanghai Ocean University, 2019: 64-65.
[73] LIU Q, SUN Z, WANG Q, et al. Influence of secondary fluid on the performance of indirect refrigeration system[J]. Applied Thermal Engineering, 2021, 197: 117388.
[74] LAN W Q, ZHANG W J, LIU J L, et al. Effects of precooling with slurry ice on the freshness of farmed perch (Lateolabrax japonicus) during logistics process[J]. Journal of Aquatic Food Product Technology, 2021, 30(2): 162-175.
[75] 班超方, 卢立新, 潘嘹. 冷冻型复合相变蓄冷材料的制备与性能评价[J]. 化工新型材料, 2019, 47(5): 218-221, 226. BAN C F, LU L X, PAN L. Preparation and performance evaluation of freeze type composite phase change material[J]. New Chemical Materials, 2019, 47(5): 218-221, 226.
[76] 章学来, 徐蔚雯, 刘田田, 等. 月桂酸-癸酸/十四醇-十二烷复合相变储能材料的制备与性能研究[J]. 制冷学报, 2016, 37(1): 60-64. ZHANG X L, XU W W, LIU T T, et al. Preparation and properties of lauric acid-decanoic/tetradecyl alcohol-dodecane composite as PCMs for thermal energy storage[J]. Journal of Refrigeration, 2016, 37(1): 60-64.
[77] ZHAO Y, ZHANG X, XU X, et al. Development of composite phase change cold storage material and its application in vaccine cold storage equipment[J]. Journal of Energy Storage, 2020, 30: 101455.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.