•  
  •  
 

Abstract

Objective: To improve the quality of wolfberry drying. Methods: Standard Realizable k-ε turbulence model was used for theoretical analysis, and fluent software was used for simulation and experimental verification to study the distribution law of heat exchange temperature field in the drying chamber, and to optimize the parameters of the heat exchange plate. The effects of heat exchanger plate inlet flow rate, heat exchanger plate runner width, heat exchanger plate runner height and heat exchanger plate spacing on the temperature field uniformity of the drying chamber were analyzed by taking the temperature uniformity coefficient and the temperature distribution cloud diagram as the evaluation criteria. Results: After the optimization of the structural parameters of the drying chamber, the temperature cloud diagram showed a large and concentrated high temperature zone, with small temperature gradients at the two ends and in the middle. The standard deviation of the temperature after optimization was reduced by 0.64% compared with that before optimization, and the overall trend of the simulated and experimental values was more or less the same, and the overall error value of the experimental and simulated values was 2.56% according to the calculation formula. Conclusion: The uniformity of temperature distribution is best when the hot water inlet flow rate is 0.18 m/s, the runner height is 22 mm, the runner width is 35 mm, and the heat exchanger plate spacing is 85 mm.

Publication Date

1-30-2024

First Page

101

Last Page

107,114

DOI

10.13652/j.spjx.1003.5788.2023.80832

References

[1] 袁海静, 安巍, 李立会, 等. 中国枸杞种质资源主要死态学性状调查与聚类分析[J]. 植物遗传资源学报, 2013, 14: 627-633. YUAN H J, AN W, LI L H, et al. Survey and cluster analysis of major necropsy traits of Chinese wolfberrygermplasm resources[J]. Journal of Plant Genetic Resources, 2013, 14: 627-633.
[2] LI H Y, RUAN Y W, KAU P. Effect of lyceum barbarum (Wolfherry) on alleviating axonal degeneration after partial optic nerve transection[J]. Cell Transplantation, 2015, 24: 403-417.
[3] 赵游丽, 冯美, 康建宏. 不同温度处理对采后枸杞果实呼吸强度和品质的影响[J]. 农业科学研究, 2010, 31(4): 34-36, 45. ZHAO Y L, FENG M, KANG J H. Effects of different temperature treatments on respiratory intensity and quality of postharvest restrained fruits[J]. Agricultural Science Research, 2010, 31(4): 34-36, 45.
[4] 张曦燕. 枸杞鲜果采后贮藏保鲜技术研究进展[J]. 宁夏农林科技, 2010(6): 81-82. ZAHGN X Y. Research progress of postharvest storage and preservation technology of fresh fruit of wolfberry[J]. Ningxia Agriculture and Forestry Science and Technology, 2010(6): 81-82.
[5] 马琴. 枸杞干燥及对多糖含量影响的试验研究[D]. 北京: 中国农业大学, 2013: 3-7. MA Q. Experimental study on drying of Lycium barbarum and its effect on polysaccharide content[D]. Beijing:China Agricultural University, 2013: 3-7.
[6] 韩爱芝, 白红进, 耿会玲, 等. 响应面法优化超声辅助提取黑果枸杞叶片总黄酮的工艺研究[J]. 西北林学院学报, 2013, 28(1): 114-118, 122. HAN A Z, BAI H J, GENG H L, et al. Optimization of ultrasound-assisted extraction of total flavonoids from leaves of black fruit wolfberry by response surface methodology[J]. Journal of Northwest Forestry College, 2013, 28(1): 114-118, 122.
[7] 高月. 枸杞干燥方法及其促干剂的研究[D]. 保定: 河北农业大学, 2015: 1-8. GAO Y. Research on the drying method of wolfberry and its drying promoter[D]. Baoding: Hebei Agricultural University, 2015: 1-8.
[8] 张倩, 李世榆, 李秀辰, 等. 裙带菜微波真空干燥质热传递特性与品质优化[J]. 食品与机械, 2022, 38(7): 166-173. ZHANG Q, LI S Y, LI X C, et al. Heat transfer characteristics and quality optimization of microwave vacuum drying of wakame[J]. Food & Machinery, 2022, 38(7): 166-173.
[9] 于洋, 贾智旗, 杨国锋, 等. 基于FLUENT的真空干燥箱参数优化及仿真分析[J]. 真空科学与技术学报, 2022, 42(2): 145-150. YU Y, JIA Z Q, YAGN G F, et al. Optimization and simulation analysis of vacuum drying oven parameters based on FLUENT[J]. Journal of Vacuum Science and Technology, 2022, 42(2): 145-150.
[10] HOANG M L, VERBOVEN P, BAERDEMAEKER D J, et al. Analysis of the air flow in a cold store by means of computational fluid dynamics[J]. International Journal of Refrigeration. 2000, 23(3): 127-140.
[11] 李赫, 张志, 任源, 等. 基于FLUENT的菊花热风干燥流场特性仿真分析[J]. 食品与机械, 2018, 34(10): 133-138. LI H, ZHANG Z, REN Y, et al. Simulation analysis of chrysanthemum hot air drying flow field characteristics based on FLUENT[J]. Food & Machinery, 2018, 34(10): 133-138.
[12] 钱若军, 董石麟, 袁行飞. 流固耦合理论研究进展[J]. 空间结构, 2008(1): 3-15. QIAN R J, DONG S L, YUAN X F. Research progress in fluid-solid coupling theory[J]. Space Structure, 2008(1): 3-15.
[13] 刘厚根, 秦贞国, 吴元兴. 基于CFD的机械增压器进、排气口的结构优化[J]. 机械设计, 2016, 33(7): 49-53. LIUH G, QIN Z G, WU Y X. Structural optimization of inlet and exhaust ports of mechanical supercharger based on CFD[J]. Mechanical Design, 2016, 33(7): 49-53.
[14] 陈红意, 赵满全. 干燥箱内温度场和气流场的建模仿真与试验研究[J]. 农机化研究, 2012, 34(8): 98-101. CHEN Y H, ZHAO M Q. Modeling simulation and experimental study of temperature and airflow fields in drying oven[J]. Agricultural Mechanization Research, 2012, 34(8): 98-101.
[15] 陶向前. 枸杞真空脉动烘干箱结构参数优化及分析[D]. 西安: 西安科技大学, 2020: 22-25. TAO X Q. Optimization and analysis of structural parameters of vacuum pulsation drying box for wolfberry[D]. Xi'an: Xi'an University of Science and Technology, 2020: 22-25.
[16] 袁宏. 强制对流烤箱流动与结构优化[D]. 杭州: 浙江大学, 2018: 18-20. YUAN H. Forced convection oven flow and structural optimization[D]. Hangzhou: Zhejiang University, 2018: 18-20.
[17] 帕坦卡. 传热与流体流动的数值计算[M]. 张政, 译. 北京: 科学出版社, 1984: 125-130. PA T A. Numerical calculation of heat transfer and fluid flow[M]. ZHANG Z. Beijing: Science Press, 1984: 125-130.
[18] 霍二光. 菊花烘干室内气流组织模拟与优化研究[D]. 南昌: 南昌大学, 2016: 31-37. HUO E G. Simulation and optimization study of airflow organization in chrysanthemum drying room[D]. Nanchang: Nanchang University, 2016: 31-37.

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.