Abstract
Objective: Reduced the damage of rose orange in the process of packaging and transportation, and provided a theoretical basis for postharvest storage and spectral quality testing. Methods: According to the basic geometric data of rose orange and the maximum compression force and puncture force obtained from TPA test and puncture test, the finite element model was constructed to simulate the compression of rose orange. Results: The diameter of rose orange ranged from 58.2 mm to 78.6 mm, the average weight was 169.746 g, the average thickness of peel at the equator was 3.1 mm, the maximum puncture force was 6.26 N, and the average rupture force was 126.802 N. Conclusion: The pressure resistance of rose orange equator is relatively weak to avoid extrusion and impact, and the force that rose orange can bear in the process of picking and transportation should not exceed 100 N.
Publication Date
1-30-2024
First Page
128
Last Page
134
DOI
10.13652/j.spjx.1003.5788.2023.80569
Recommended Citation
Siyu, LU; Qiang, LUO; Yushu, LAI; and Qiming, XIA
(2024)
"Compression characteristics and damage mechanism of rose orange,"
Food and Machinery: Vol. 40:
Iss.
1, Article 19.
DOI: 10.13652/j.spjx.1003.5788.2023.80569
Available at:
https://www.ifoodmm.cn/journal/vol40/iss1/19
References
[1] 洪林, 农江飞, 彭芳芳, 等. 塔罗科血橙果实空间方位对其品质的影响[C]// 中国园艺学会2019年学术年会暨成立90周年纪念大会. 郑州: [出版者不详], 2019: 79.
HONG L, NONG J F, PENG F F, et al. Effect of spatial orientation on fruit quality of Taroko Blood orange[C]// Annual meeting of Chinese Society of Horticulture in 2019 and commemoration of its 90th Anniversary. Zhengzhou: [s.n.], 2019: 79.
[2] 钱丰清, 樊敏. 血橙呈现"红色"的探讨[J]. 化学教育(中英文), 2022, 43(17): 1-6.
QIAN F Q, FAN M. Discussion on "red" appearance of blood oranges[J]. Chinese Journal of Chemical Education, 2022, 43(17): 1-6.
[3] 冯慧敏, 郭玉明, 武新慧. 果蔬压缩破坏特性的试验研究[J]. 包装与食品机械, 2015(3): 1-4.
FENG H M, GUO Y M, WU X H. Experimental study on compression failure characteristics of fruits and vegetables[J]. Packaging and Food Machinery, 2015(3): 1-4.
[4] 李小昱, 王为. 苹果运输振动损伤初探[J]. 西北农业大学学报, 1998(4): 20-24.
LI X Y, WANG W. Simulation of vibration damage in apple transportation[J]. Journal of Northwest Agricultural University, 1998(4): 20-24.
[5] 段壳. 基于生物屈服点的苹果无损采摘研究[D]. 北京: 北京林业大学, 2020: 55.
DUAN K. Research on non-destructive apple picking based on biological yield point[D]. Beijing: Beijing Forestry University, 2020: 55.
[6] FU H, KARKEE M, LONG H, et al. Bruise patterns of fresh market apples caused by fruit-to-fruit impact[J]. Agronomy, 2020, 10(1): 59.
[7] 胡广锐, 卜令昕, 张恩宇, 等. 苹果两向异性力学特性和跌落试验研究[J]. 农机化研究, 2021, 43(4): 154-160.
HU G R, BU L X, ZHANG E Y, et al. Experimental research of anisotropic mechanical properties and drop test of apples[J]. Journal of Agricultural Mechanization Research, 2021, 43(4): 154-160.
[8] 王佳, 李绍波, 陈春皓, 等. 果箱包装结构对苹果损伤特性的影响[J]. 包装与食品机械, 2023, 41(1): 48-54.
WANG J, LI S B, CHEN C H, et al. Effects of packing structure of fruit box on damage characteristics of apples[J]. Packaging and Food Machinery, 2023, 41(1): 48-54.
[9] 潘嘹, 卢立新, 王军. 基于分数阶导数的果品果柱蠕变特性表征[J]. 包装与食品机械, 2013, 31(1): 1-4.
PAN L, LU L X, WANG J. The creep properties of fruit samples based on fractional order derivative[J]. Packaging and Food Machinery, 2013, 31(1): 1-4.
[10] 詹园凤, 贺滉, 谢彩虹, 等. 耐裂性不同的西瓜发育过程中果实力学特性及果皮结构动态研究[J]. 广东农业科学, 2020, 47(10): 18-24.
ZHAN Y F, HE H, XIE C H, et al. Study on fruit mechanical properties and peel structure during development of watermelon with different crack tolerance[J]. Guangdong Agricultural Sciences, 2019, 47(10): 18-24.
[11] 王芳, 王春光, 杨晓清. 西瓜的力学特性及其有限元分析[J]. 农业工程学报, 2008, 24(11): 118-121.
WANG F, WANG C G, YANG X Q. Mechanical properties and Finite element analysis of watermelon[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(11): 118-121.
[12] 杨晓清, 王春光. 河套蜜瓜机械特性与静载损伤关系的研究[J]. 农业工程学报, 2008, 24(3): 31-37.
YANG X Q, WANG C G. Relationship between mechanical properties and damage of hetao muskmelons under static compression[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(3): 31-37.
[13] 王芳, 韩媛媛, 魏星, 等. 河套蜜瓜跌落冲击特性[J]. 江苏农业科学, 2017, 45(8): 199-201.
WANG F, HAN Y Y, WEI X, et al. Drop impact characteristics of hetao melon[J]. Jiangsu Agricultural Sciences, 2017, 45(8): 199-201.
[14] 姜松, 鲍黄贵, 蔡健荣, 等. 柑橘力学差异性研究[J]. 江苏农业科学, 2009(5): 244-246.
JIANG S, BAO H G, CAI J R, et al. Study on mechanical differences of citrus[J]. Jiangsu Agricultural Sciences, 2009(5): 244-246.
[15] 姜松, 鲍黄贵, 蔡健荣, 等. 不同成熟度柑橘力学特性研究[J]. 食品工业科技, 2009(12): 117-119.
JIANG S, BAO H G, CAI J R, et al. Study on mechanical parameters of orange at different maturity stages[J]. Science and Technology of Food Industry, 2009(12): 117-119.
[16] 鲍黄贵. 基于机器人采摘的柑橘力学特性分析及柑橘贮藏期品质变化研究[D]. 镇江: 江苏大学, 2009: 53.
BAO H G. Analysis of mechanical properties of citrus based on robot picking and study on quality change of citrus during storage[D]. Zhenjiang: Jiangsu University, 2009: 53.
[17] 尹伊君. 宽皮柑橘压缩损伤特性与机械损伤评估研究[D]. 武汉: 华中农业大学, 2018: 68.
YIN Y J. Research on compression damage characteristics and Mechanical damage evaluation of wide-peel citrus[D]. Wuhan: Huazhong Agricultural University, 2018: 68.
[18] 陈红, 尹伊君, 潘海兵, 等. 宽皮柑橘机械损伤致损因素分析及缓冲减损防护措施[J]. 农业工程学报, 2018, 34(1): 258-266.
CHEN H, YIN Y J, PAN H B, et al. Loss factor analysis of mechanical damage and cushioning protection measure for citrus reticulate blanco[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(1): 258-266.
[19] 陈红, 徐翔宙, 尹伊君, 等. 宽皮柑橘移动夹持剥皮力学特性与果皮分离特性试验研究[J]. 农业工程学报, 2017, 33(14): 25-31.
CHEN H, XU X Z, YIN Y J, et al. Experimental study on mechanical properties and peel separation characteristics of citrus reticulate blanco with peel clamped moving[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(14): 25-31.
[20] 王剑英, 王海宝, 罗强, 等. 沃柑果实跌落的仿真分析[J]. 南方农业, 2022, 16(21): 241-245.
WANG J Y, WANG H B, LUO Q, et al. Simulation analysis of Orah mandarin fruit drop[J]. South China Agriculture, 2022, 16(21): 241-245.
[21] PALLOTTINO F, COSTA C, MENESATTI P, et al. Assessment of the mechanical properties of Tarocco orange fruit under parallel plate compression[J]. Journal of Food Engineering, 2011, 103(3): 308-316.
[22] 邵显. 宽皮柑橘挤压损伤与品质劣变机理研究[D]. 武汉: 华中农业大学, 2020: 32-33.
SHAO X. Study on mechanism of extrusion damage and quality deterioration of wide-peel citrus[D]. Wuhan: Huazhong Agricultural University, 2020: 32-33.
[23] 张新, 王博, 张黎骅. 葵花籽仁力学特性的有限元分析[J]. 食品与机械, 2017, 33(2): 31-35.
ZHANG X, WANG B, ZHANG L H. Finite element analysis on mechanical properties of sunflower seed[J]. Food & Machinery, 2017, 33(2): 31-35.