Abstract
Objective: A method for simultaneous detection of 16 quinolones in food of animal origin was developed byclean-up column pretreatment combined with ultra high performance liquid chromatography-tandem mass spectrometry. Methods: Food samples of animal origin were extracted using 80% acetonitrile (containing 0.2% formic acid). After purification on a Speedy Prep-Quino 1 column, 16 quinolone residues were detected by ultra-high performance liquid chromatography tandem mass spectrometry. Results: The results showed that the linear range of 16 quinolones was 1.6~40.0 μg/kg, the correlation coefficient r≥0.996 1, the limits of detection were 0.14~0.80 μg/kg, and the limits of quantification were 0.47~2.68 μg/kg. The recoveries of seven matrix after pretreatment were 62%~112%, and the relative standard deviations were 0.9%~18.7%. Conclusion: The method has the characteristics of fast detection speed and high sensitivity, and can be applied to animal derived food such as mutton, duck, beef, fish, eggs, pig kidney, duck skin.
Publication Date
1-30-2024
First Page
55
Last Page
62,67
DOI
10.13652/j.spjx.1003.5788.2023.80073
Recommended Citation
Tingting, YU; Song, LIANG; Wenhui, HUANG; Jie, HE; and Yiyong, YAN
(2024)
"Establishment and application of clean-up combined with ultra-high performance liquid chromatography tandem mass spectrometry for the detection of 16 quinolones in animal-derived food,"
Food and Machinery: Vol. 40:
Iss.
1, Article 8.
DOI: 10.13652/j.spjx.1003.5788.2023.80073
Available at:
https://www.ifoodmm.cn/journal/vol40/iss1/8
References
[1] 黄华, 谢文东, 谷雨, 等. UPLC-MS-MS法同时测定鸡肉食品中37种兽药残留[J]. 食品与发酵工业, 2022, 48(13): 290-296.
HUAN G H, XIE W D, GU Y, et al. Simultaneous determination of 37 veterinary drug residues in chicken food by UPLC-MS-MS[J]. Food FermentInd, 2022, 48(13): 290-296.
[2] 严明, 严寒, 唐建, 等. HPLC-MS/MS快速测定饲料中25种喹诺酮类药物[J]. 中国饲料, 2021(15): 72-77.
YAN M, YAN H, TANG J, et al. Rapid determination of 25 quinolones in feed by HPLC-MS/MS[J]. China Feed, 2021(15): 72-77.
[3] 杨勇, 罗奕, 吴琳琳, 等. 薄层色谱法测定牛奶、蜂蜜中6种氟喹诺酮类药物残留[J]. 江苏农业科学, 2015(10): 380-383.
YANG Y, LUO Y, WU L L, et al. Determination of 6 fluoroquinolones residues in milk and honey by thin-layer chromatography[J]. Jiangsu Agric Sci, 2015(10): 380-383.
[4] CHO H J, ABD El-ATY A M, GOUDAH A, et al. Monitoring of fluoroquinolone residual levels in chicken eggs by microbiological assay and confirmation by liquid chromatography[J]. Biomed Chromatogr, 2008, 22(1): 92-99.
[5] UET A C, CHARLIER C, TITTLEMIER S A, et al. Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine products, eggs, and muscle by enzyme-linked immunosorbent assay (ELISA)[J]. J Agric Food Chem, 2006, 54(8): 2 822-2 827.
[6] 钱卓真, 苏秀华, 魏博娟, 等. 高效液相色谱法同时测定水产品中6种喹诺酮药物的残留[J]. 食品科学, 2010, 31(6): 185-189.
QIAN Z Z, SU X H, WEI B J, et al. Simultaneous determination of six quinolone residues in aquatic products by high performance liquid chromatography[J]. Food Science, 2010, 31(6): 185-189.
[7] TOUSSAINT B, CHEDIN M, BORDIN G, et al. Determination of (fluoro)quinolone antibiotic residues in pig kidney using liquid chromatography-tandem mass spectrometry. I. Laboratory-validated method[J]. J Chromatogr A, 2005, 1 088(1/2): 32-39.
[8] 张居舟, 李静. 在线固相萃取—同位素稀释/超高效液相色谱—串联质谱法测定蜂蜜中26种喹诺酮类化合物[J]. 分析测试学报, 2021, 40(10): 1 417-1 424.
ZHANG J Z, LI J. Determination of 26 quinolones in honey by online solid phase extraction isotopic dilution/ultra high performance liquid chromatography tandem mass spectrometry[J]. JInstrum Anal, 2021, 40(10): 1 417-1 424.
[9] 彭大红, 梅艳珍, 郝爱月, 等. 基于响应面分析的PRiME HLB-HPLC法高灵敏检测牛乳中5种限用氟喹诺酮类药物[J]. 食品科技, 2021, 46(8): 276-283.
PENG D H, MEI Y Z, HAO A Y, et al. Highly sensitive detection of five restrictedfluoroquinolones in milk by PRiME HLB HPLC based on response surface analysis[J]. Food Science Technology, 2021, 46(8): 276-283.
[10] 孙卫明, 王权帅. 多功能净化柱—超高效液相色谱—串联质谱法测定挂面, 方便面中4种真菌毒素[J]. 中国卫生检验杂志, 2021, 31(6): 662-665.
SUN W M, WANG Q S. Determination of four mycotoxins in dried noodles and instant noodles by multifunctional purification column ultra high performance liquid chromatography tandem mass spectrometry[J]. Chin J Health Lab Technol, 2021, 31(6): 662-665.
[11] 张健玲, 黄慧贤, 王志林, 等. 超高效液相色谱—串联质谱法同时测定鳗鱼中32种兽药残留[J]. 食品安全质量检测学报, 2021, 12(23): 9 013-9 020.
ZHANG J L, HUANG H X, WANG Z L, et al. Simultaneous determination of 32 veterinary drug residues in eel by ultra performance liquid chromatography tandem mass spectrometry[J]. Food Saf Qual, 2021, 12 (23): 9 013-9 020.
[12] 杨艳菲, 曹旭敏, 李雪莲, 等. 分子印迹固相萃取—超高效液相色谱—串联质谱法测定鸡肉中9种氟喹诺酮药物残留[J]. 色谱, 2016, 34(11): 1 063-1 069.
YANG Y F, CAO X M, LI X L, et al. Determination of 9 fluoroquinolones residues in chicken by molecular imprinted solid phase extraction ultrahigh performance liquid chromatography tandem mass spectrometry[J]. Chin J Chromatogr, 2016, 34(11): 1 063-1 069.
[13] TURIEL E, BORDIN G, RODRIGUEZ A R. Trace enrichment of (fluoro) quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography-ultraviolet detection[J]. J Chromatogr A, 2003, 1 008(2): 145-155.
[14] MIRZAJANI R, KARDANI F. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phasemicroextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection[J]. J Pharm Biomed Anal, 2016, 122: 98-109.
[15] WANG H, ZHAO X, XU J, et al. Determination of quinolones in environmental water and fish by magnetic metal organic frameworks based magnetic solid-phase extraction followed by high-performance liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2021, 1 651: 462286.
[16] WANG C, LI X, YU F, et al. Multi-class analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Food Chem, 2021, 334: 127598.
[17] VZQUEZ M M, VZQUEZ P P, GALERA M M, et al. Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction prior to high-performance liquid chromatography and fluorescence detection[J]. Anal Chim Acta, 2012, 748: 20-27.
[18] TIMOFEEVA I, TIMOFEEV S, MOSKVIN L, et al. A dispersive liquid-liquidmicroextraction using a switchable polarity dispersive solvent. Automated HPLC-FLD determination of ofloxacin in chicken meat[J]. Anal Chim Acta, 2017, 949: 35-42.
[19] 周艳华, 李涛, 潘小红, 等. 液液萃取—超高效液相色谱—串联质谱法快速检测原料乳中18种喹诺酮药物残留[J]. 食品与机械, 2021, 37(8): 63-69, 76.
ZHOU Y H, LI T, PAN X H, et al. Rapid determination of 18 quinolone residues in raw milk by liquid liquid extraction ultrahigh performance liquid chromatography tandem mass spectrometry[J]. Food & Machinery, 2021, 37(8): 63-69, 76.
[20] HUANG X, QIU N, YUAN D, et al. Preparation of a mixed stir bar forsorptive extraction based on monolithic material for the extraction of quinolones from wastewater[J]. J Chromatogr A, 2010, 1 217(16): 2 667-2 673.
[21] 黄季维, 樊文明, 刘桂丹, 等. QuEChERS净化液相色谱质谱/质谱法用于测定禽畜肉中18种喹诺酮类抗生素[J]. 预防医学情报杂志, 2021, 37(11): 1 596-1 603.
HUANG J W, FAN W M, LIU G D, et al. QuEChERS purified liquid chromatography-mass spectrometry/mass spectrometry was used to determine 18 quinolone antibiotics in poultry and livestock meat[J]. J Prev Med Inf, 2021, 37(11): 1 596-1 603.
[22] 马俊美, 范素芳, 孙磊, 等. 超高效液相色谱—四极杆/静电场轨道阱高分辨质谱法测定牛奶中19种喹诺酮类抗生素[J]. 中国食品学报, 2021, 21(1): 309-317.
MA J M, FAN S F, SUN L, et al. Determination of 19 quinolones in milk by ultra-high performance liquid chromatography-quadrupole/electrostatic field orbital trap high resolution mass spectrometry[J]. Chin Inst Food Sci Technol, 2021, 21(1): 309-317.