Abstract
[Objective] To establish a fast and nondestructive analysis method for identifying iron rod yam.[Methods] Atmospheric pressure chemical ionization mass spectrometry (APCI -MS) was employed to detect the chemical constituents of iron rod yam (TG) and non -iron rod yam (FTG ) from different origins under ambient temperature and pressure,With 200 sets of data collected from each type of TG and FTG,and a total of 3 600 mass spectrometry data points were obtained.Subsequently,the initial level of the mass spectrometry data obtained was analyzed using Principal Component Analysis (PCA ) and the random forest (RF) algorithm.Pattern recognition analysis established a model to differentiate between TG and FTG based on their chemical compositions.[Results]] The difference between the first -level mass spectra obtained by HS -APCI -MS was obvious between TG samples and FTG samples.The cumulative variance contribution plot of the principal components showed that the first seven principal components accounted for 85.63% (≥85%) of the variance.The accuracy of the training set and detection set reached 100% when the number of decision trees was 25.HS-APCI -MS combined with RF algorithm had a significant identification effect on TG,and the classification effect of RF was superior to that of PCA.[Conclusion] Atmospheric pressure chemical ionization mass spectrometry,combined with the RF algorithm,can rapidly and non -destructively identify TG and FTG,providing a new technical method for authenticating TG.
Publication Date
2-18-2025
First Page
47
Last Page
53
DOI
10.13652/j.spjx.1003.5788.2024.80130
Recommended Citation
Hengyan, ZHONG; Chun, CHEN; Yongzhong, OUYANG; Lin, ZHOU; and Weiqing, GUO
(2025)
"Rapid identification of the authenticity of iron rod yam by in-situ mass spectrometry based on random forest algorithm,"
Food and Machinery: Vol. 40:
Iss.
11, Article 7.
DOI: 10.13652/j.spjx.1003.5788.2024.80130
Available at:
https://www.ifoodmm.cn/journal/vol40/iss11/7
References
[1] WANG Q,WANG X,WU X,et al.H-1NMR-based metabolic profiling approach to identify the geo-authentic Chinese yam (Dioscorea polystachya Turczaninow cv.Tiegun ) [J].Journal of Food Composition and Analysis,2021,98(1):103805.
[2] 訾帅朋,田大伟,常青晓.温县铁棍山药产业发展调研报告[J].河南农业,2022 (7):4.ZI S P,TIAN D W,CHANG Q X.Research report on the development of Wen County's Tieguanyin industry [J].Henan Agriculture,2022 (7):4.
[3] 安莉,汪红,马婧玮,等.基于 UPLC-Q/TOF-MS/MS 和生物信息学探讨铁棍山药皮中化学成分的药用和营养价值 [J].食品工业科技,2023,44(2):1-9.AN L,WANG H,MA J W,et al.Medicinal and nutritional value of the chemical compositions of Dioscorea opposita Thunb.cv.tiegun peel based on UPLC-Q/TOF-MS/MS and bioinformatics[J].Science and Technology of Food Industry,2023,44(2):1-9.
[4] 杨燕梅,郑学东,王海涛,等.山药和广山药的生药鉴别研究[J].中兽医医药杂志,2020,39(3):87-89.YANG Y M,ZHENG X D,WANG H T,et al.Determination of colchicine content in Lilium lancifolium Thunb and its bulbs [J].Journal of Traditional Chinese Veterinary Medicine,2020,39(3):87-89.
[5] 国家药典委员会.中华人民共和国药典:四部 [S].2020版.北京:中国医药科技出版社,2020:230-231.Chinese Pharmacopoeia Commission.Pharmacopoeia of the People's Republic of China:4 volumes [S].2020 ed.Beijing:China Medical Science Press,2020:230-231.
[6] 李长滨,牛畅炜,苏丽,等.不同产地山药的近红外鉴别和差异分析 [J].食品研究与开发,2022,43(15):175-181.|LI C B,NIU C W,SU L,et al.Identification and varia nce analysis of chinese yam from different origins by near infrared spectroscopy [J].Food Research and Development,2022,43(15):175-181.
[7] 唐庆,王然,杨德泉,等.土炒山药的薄层色谱鉴别及尿囊素含量测定研究 [J].药品评价,2022,19(14):853-857.TANG Q,WANG R,YANG D Q,et al.Study on thin layer chromatographic identification and determination of urantoin content of soil fried yam [J].Drug Evaluation,2022,19(14):853-857.
[8] 孟啸龙,孟乡,周国富,等.DNA条形码在山药及其混伪品鉴定中的应用 [J].辽宁中医杂志,2020,47(4):163-166.MENG X L,MENG X,ZHOU G F,et al.Application of DNA barcode in identification of D.oppositifolia and its adulterants[J].Liaoning Journal of Traditional Chinese Medicine,2020,47(4):163-166.
[9] 魏亮,张超楠,李科研,等.基于核磁共振代谢组学技术比较不同产地铁棍山药的化学成分差异 [J].分析测试学报,2022,41(5):774-780.WEI L,ZHANG C N,LI K Y,et al.Comparison of chemical constituents in Dioscorea polystachya Truczaninow cv.tiegun planted in different counties by 1H-NMR metabonomics approach [J].Journal of Instrumental Analysis,2022,41(5):774-780.
[10] KOH J,KIM B J,QU Y,et al.Mass spectral profiling of caseinomacropeptide extracted from feeding material and jejunal fluid using three methods-ethanol precipitation,perchloric acid precipitation,and ultrafiltration [J].Food Chemistry,2023,398(1):133864.
[11] 孙强,王丽艳,荆瑞勇,等.不同品种亚麻籽 8种生物活性物质含量及其主成分分析 [J].食品与机械,2022,38(9):40-45,145.SUN Q,WANG L Y,JING R Y,et al.Determination and principal component analysis of 8 kinds of bioactive [J].Food & Machinery,2022,38(9):40-45,145.
[12] 黄盛蓝,杜木英,周先容,等.发软泡菜品质及风味物质主成分分析 [J].食品与机械,2017,33(12):36-44.HUANG S L,DU M Y,ZHOU X R,et al.Quality indifferent softness of pickles and its principal components analysis of volatiles [J].Food & Machinery,2017,33(12):36-44.
[13] BREIMAN L.Random forest [J].Machine Learning,2001,45(1):5-32.
[14] 陈卓,丁利,曹天红,等.基于层次分析法和随机森林回归算法的谷物资源风险评估模型 [J].食品与机械,2021,37(12):58-66.CHEN Z,DING L,CAO T H,et al.Risk assessment model of grain resource based on AHP and random forest regression algorithm [J].Food & Machinery,2021,37(12):58-66.
[15] SIMIC V,TORKAYESH A E,MAGHSOODI A I.Locating a disinfection facility for hazardous healthcare waste in the COVID- 19 era:a novel approach based on Fermatean fuzzy ITARA-MARCOS and random forest recursive feature elimination algorithm [J].Annals of Operations Research,2023,328(1):1 105-1 150.
[16] 欧阳永中,曾玉庭,郭伟清,等.基于随机森林算法的原位质谱快速鉴别肺癌的方法研究 [J].分析化学,2020,48(8):1 012-1 022.OUYANG Y Z,ZENG Y T,GUO W Q,et al.Rapid identification of lung cancer by in situ mass spectrometry based on the random forest algorithm [J].Chinese Journal of Analytical Chemistry,2020,48 (8):1 012-1 022.
[17] 丁莎,申涛榕,张艳飞,等.基于随机森林算法的烟草提取物类别识别模型研究 [J].分析测试学报,2023,42(11):1 510-1 516.DING S,SHEN T R,ZHANG Y F,et al.Study on classification model for tobacco extracts based on random forest algorithm [J].Journal of Instrumental Analysis,2023,42(11):1 510-1 516.
[18] 武炜杰,张景祥.融合分类信息的随机森林特征选择算法及应用 [J].计算机工程与应用,2021,57(17):147-156.WU W J,ZHANG J X.Random forest feature selection algorithm based on categorization information and application[J].Computer Engineering and Application,2021,57(17):147-156.